Xin Chang-Peng, Tholen Danny, Devloo Vincent, Zhu Xin-Guang
Key Laboratory of Computational Biology, Chinese Academy of Sciences-German Max Planck Society Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China (C.-P.X., D.T., V.D., X.-G.Z.);Shanghai Botanical Garden, Shanghai 200231, China (C.-P.X.);Institute of Botany, Department of Integrative Biology, Universität für Bodenkultur Wien, Vienna, A-1180 Vienna, Austria (D.T.); andState Key Laboratory of Hybrid Rice Research, Changsha, Hunan Province 410125, China (X.-G.Z.).
Key Laboratory of Computational Biology, Chinese Academy of Sciences-German Max Planck Society Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China (C.-P.X., D.T., V.D., X.-G.Z.);Shanghai Botanical Garden, Shanghai 200231, China (C.-P.X.);Institute of Botany, Department of Integrative Biology, Universität für Bodenkultur Wien, Vienna, A-1180 Vienna, Austria (D.T.); andState Key Laboratory of Hybrid Rice Research, Changsha, Hunan Province 410125, China (X.-G.Z.)
Plant Physiol. 2015 Feb;167(2):574-85. doi: 10.1104/pp.114.248013. Epub 2014 Dec 16.
Bypassing the photorespiratory pathway is regarded as a way to increase carbon assimilation and, correspondingly, biomass production in C3 crops. Here, the benefits of three published photorespiratory bypass strategies are systemically explored using a systems-modeling approach. Our analysis shows that full decarboxylation of glycolate during photorespiration would decrease photosynthesis, because a large amount of the released CO2 escapes back to the atmosphere. Furthermore, we show that photosynthesis can be enhanced by lowering the energy demands of photorespiration and by relocating photorespiratory CO2 release into the chloroplasts. The conductance of the chloroplast membranes to CO2 is a key feature determining the benefit of the relocation of photorespiratory CO2 release. Although our results indicate that the benefit of photorespiratory bypasses can be improved by increasing sedoheptulose bisphosphatase activity and/or increasing the flux through the bypass, the effectiveness of such approaches depends on the complex regulation between photorespiration and other metabolic pathways.
绕过光呼吸途径被认为是一种增加C3作物碳同化以及相应地增加生物量生产的方法。在此,我们使用系统建模方法系统地探索了三种已发表的光呼吸旁路策略的益处。我们的分析表明,光呼吸期间乙醇酸的完全脱羧会降低光合作用,因为大量释放的二氧化碳会逸回到大气中。此外,我们表明,通过降低光呼吸的能量需求以及将光呼吸释放的二氧化碳重新定位到叶绿体中,可以增强光合作用。叶绿体膜对二氧化碳的传导率是决定光呼吸释放的二氧化碳重新定位益处的关键特征。虽然我们的结果表明,通过增加景天庚酮糖二磷酸酶活性和/或增加通过旁路的通量可以提高光呼吸旁路的益处,但这些方法的有效性取决于光呼吸与其他代谢途径之间的复杂调控。