Suppr超能文献

数据分析和统计学常见误区。

Common misconceptions about data analysis and statistics.

机构信息

GraphPad Software Inc.7825 Fay Avenue Suite 230 La Jolla, CA, 92037, USA.

出版信息

Pharmacol Res Perspect. 2015 Feb;3(1):e00093. doi: 10.1002/prp2.93. Epub 2014 Dec 2.

Abstract

Ideally, any experienced investigator with the right tools should be able to reproduce a finding published in a peer-reviewed biomedical science journal. In fact, the reproducibility of a large percentage of published findings has been questioned. Undoubtedly, there are many reasons for this, but one reason may be that investigators fool themselves due to a poor understanding of statistical concepts. In particular, investigators often make these mistakes: (1) P-Hacking. This is when you reanalyze a data set in many different ways, or perhaps reanalyze with additional replicates, until you get the result you want. (2) Overemphasis on P values rather than on the actual size of the observed effect. (3) Overuse of statistical hypothesis testing, and being seduced by the word "significant". (4) Overreliance on standard errors, which are often misunderstood.

摘要

理想情况下,任何有经验的、拥有正确工具的调查人员都应该能够复制发表在同行评审的生物医学科学期刊上的研究结果。事实上,已经有很大比例的已发表研究结果的可重复性受到了质疑。毫无疑问,造成这种情况的原因有很多,但原因之一可能是由于调查人员对统计概念的理解较差,而自欺欺人。特别是,调查人员经常犯这些错误:(1)P 操纵。这是指你通过多种不同的方式重新分析数据集,或者可能用额外的重复分析,直到得到你想要的结果。(2)过分强调 P 值而不是实际观察到的效果大小。(3)过度使用统计假设检验,并被“显著”这个词所诱惑。(4)过度依赖经常被误解的标准误差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1364/4317225/72026476c214/prp20003-e00093-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验