Suppr超能文献

污水处理厂中诺如病毒和雄性特异性大肠杆菌噬菌体浓度降低的Meta分析。

Meta-Analysis of the Reduction of Norovirus and Male-Specific Coliphage Concentrations in Wastewater Treatment Plants.

作者信息

Pouillot Régis, Van Doren Jane M, Woods Jacquelina, Plante Daniel, Smith Mark, Goblick Gregory, Roberts Christopher, Locas Annie, Hajen Walter, Stobo Jeffrey, White John, Holtzman Jennifer, Buenaventura Enrico, Burkhardt William, Catford Angela, Edwards Robyn, DePaola Angelo, Calci Kevin R

机构信息

U.S. Food and Drug Administration, College Park, Maryland, USA.

U.S. Food and Drug Administration, Dauphin Island, Alabama, USA.

出版信息

Appl Environ Microbiol. 2015 Jul;81(14):4669-81. doi: 10.1128/AEM.00509-15. Epub 2015 May 1.

Abstract

Human norovirus (NoV) is the leading cause of foodborne illness in the United States and Canada. Wastewater treatment plant (WWTP) effluents impacting bivalve mollusk-growing areas are potential sources of NoV contamination. We have developed a meta-analysis that evaluates WWTP influent concentrations and log10 reductions of NoV genotype I (NoV GI; in numbers of genome copies per liter [gc/liter]), NoV genotype II (NoV GII; in gc/liter), and male-specific coliphage (MSC; in number of PFU per liter), a proposed viral surrogate for NoV. The meta-analysis included relevant data (2,943 measurements) reported in the scientific literature through September 2013 and previously unpublished surveillance data from the United States and Canada. Model results indicated that the mean WWTP influent concentration of NoV GII (3.9 log10 gc/liter; 95% credible interval [CI], 3.5, 4.3 log10 gc/liter) is larger than the value for NoV GI (1.5 log10 gc/liter; 95% CI, 0.4, 2.4 log10 gc/liter), with large variations occurring from one WWTP to another. For WWTPs with mechanical systems and chlorine disinfection, mean log10 reductions were -2.4 log10 gc/liter (95% CI, -3.9, -1.1 log10 gc/liter) for NoV GI, -2.7 log10 gc/liter (95% CI, -3.6, -1.9 log10 gc/liter) for NoV GII, and -2.9 log10 PFU per liter (95% CI, -3.4, -2.4 log10 PFU per liter) for MSCs. Comparable values for WWTPs with lagoon systems and chlorine disinfection were -1.4 log10 gc/liter (95% CI, -3.3, 0.5 log10 gc/liter) for NoV GI, -1.7 log10 gc/liter (95% CI, -3.1, -0.3 log10 gc/liter) for NoV GII, and -3.6 log10 PFU per liter (95% CI, -4.8, -2.4 PFU per liter) for MSCs. Within WWTPs, correlations exist between mean NoV GI and NoV GII influent concentrations and between the mean log10 reduction in NoV GII and the mean log10 reduction in MSCs.

摘要

人诺如病毒(NoV)是美国和加拿大食源性疾病的主要病因。影响双壳贝类养殖区的污水处理厂(WWTP)废水是诺如病毒污染的潜在来源。我们开展了一项荟萃分析,评估污水处理厂进水口诺如病毒I型(NoV GI;以每升基因组拷贝数[gc/升]计)、诺如病毒II型(NoV GII;以gc/升计)以及雄性特异性噬菌体(MSC;以每升噬斑形成单位数计)的浓度和以10为底的减少量,MSC是一种提议的诺如病毒替代病毒。该荟萃分析纳入了截至2013年9月科学文献中报告的相关数据(2943次测量)以及美国和加拿大此前未发表的监测数据。模型结果表明,诺如病毒GII型污水处理厂进水口的平均浓度(3.9 log10 gc/升;95%可信区间[CI],3.5,4.3 log10 gc/升)高于诺如病毒GI型(1.5 log10 gc/升;95% CI,0.4,2.4 log10 gc/升),不同污水处理厂之间存在很大差异。对于采用机械系统和氯消毒的污水处理厂,诺如病毒GI型的平均以10为底的减少量为-2.4 log10 gc/升(95% CI,-3.9,-1.1 log10 gc/升),诺如病毒GII型为-2.7 log10 gc/升(95% CI,-3.6,-1.9 log10 gc/升),MSC为-2.9 log10 PFU/升(95% CI,-3.4,-2.4 log10 PFU/升)。对于采用泻湖系统和氯消毒的污水处理厂,诺如病毒GI型的可比数值为-1.4 log10 gc/升(95% CI,-3.3,0.5 log10 gc/升),诺如病毒GII型为-1.7 log10 gc/升(95% CI,-3.1,-0.3 log10 gc/升),MSC为-3.6 log10 PFU/升(95% CI,-4.8,-2.4 PFU/升)。在污水处理厂内部,诺如病毒GI型和GII型进水口的平均浓度之间以及诺如病毒GII型的平均以10为底的减少量与MSC的平均以10为底的减少量之间存在相关性。

相似文献

1
Meta-Analysis of the Reduction of Norovirus and Male-Specific Coliphage Concentrations in Wastewater Treatment Plants.
Appl Environ Microbiol. 2015 Jul;81(14):4669-81. doi: 10.1128/AEM.00509-15. Epub 2015 May 1.
2
Pathogenic Enteric Viruses and Microbial Indicators during Secondary Treatment of Municipal Wastewater.
Appl Environ Microbiol. 2015 Sep;81(18):6436-45. doi: 10.1128/AEM.01218-15. Epub 2015 Jul 10.
3
Norovirus and FRNA bacteriophage determined by RT-qPCR and infectious FRNA bacteriophage in wastewater and oysters.
Water Res. 2013 Sep 15;47(14):5222-31. doi: 10.1016/j.watres.2013.06.008. Epub 2013 Jun 24.
4
Occurrence of norovirus in raw sewage - A systematic literature review and meta-analysis.
Water Res. 2017 Mar 15;111:366-374. doi: 10.1016/j.watres.2017.01.017. Epub 2017 Jan 9.
5
Inactivation of Human Norovirus Genogroups I and II and Surrogates by Free Chlorine in Postharvest Leafy Green Wash Water.
Appl Environ Microbiol. 2017 Oct 31;83(22). doi: 10.1128/AEM.01457-17. Print 2017 Nov 15.
8
Concentration of norovirus during wastewater treatment and its impact on oyster contamination.
Appl Environ Microbiol. 2012 May;78(9):3400-6. doi: 10.1128/AEM.07569-11. Epub 2012 Feb 24.
9
Beyond COVID-19: Wastewater-based epidemiology for multipathogen surveillance and normalization strategies.
Sci Total Environ. 2024 Oct 10;946:174419. doi: 10.1016/j.scitotenv.2024.174419. Epub 2024 Jul 2.

引用本文的文献

2
3
Enteric pathogen reduction targets for onsite non-potable water systems: A critical evaluation.
Water Res. 2023 Apr 15;233:119742. doi: 10.1016/j.watres.2023.119742. Epub 2023 Feb 15.
4
Jatrorrhizine Suppresses Murine-Norovirus-Triggered N-GSDMD-Dependent Pyroptosis in RAW264.7 Macrophages.
Vaccines (Basel). 2023 Jan 12;11(1):164. doi: 10.3390/vaccines11010164.
8
Applicability Evaluation of Male-Specific Coliphage-Based Detection Methods for Microbial Contamination Tracking.
J Microbiol Biotechnol. 2021 Dec 28;31(12):1709-1715. doi: 10.4014/jmb.2110.10003.
9
Risk Assessment of Norovirus Illness from Consumption of Raw Oysters in the United States and in Canada.
Risk Anal. 2022 Feb;42(2):344-369. doi: 10.1111/risa.13755. Epub 2021 Jun 13.
10
Coliphages as Indicators for the Microbial Quality of Treated Wastewater Effluents.
Food Environ Virol. 2021 Jun;13(2):170-178. doi: 10.1007/s12560-020-09459-5. Epub 2021 Jan 11.

本文引用的文献

1
Norovirus disease in the United States.
Emerg Infect Dis. 2013 Aug;19(8):1198-205. doi: 10.3201/eid1908.130465.
2
Presence of antibodies against genogroup VI norovirus in humans.
Virol J. 2013 Jun 4;10:176. doi: 10.1186/1743-422X-10-176.
3
Estimates of the burden of foodborne illness in Canada for 30 specified pathogens and unspecified agents, circa 2006.
Foodborne Pathog Dis. 2013 Jul;10(7):639-48. doi: 10.1089/fpd.2012.1389. Epub 2013 May 9.
6
Epidemiology of foodborne norovirus outbreaks, United States, 2001-2008.
Emerg Infect Dis. 2012 Oct;18(10):1566-73. doi: 10.3201/eid1810.120833.
8
Discrimination between infectious and non-infectious human norovirus using porcine gastric mucin.
Int J Food Microbiol. 2012 Apr 16;155(3):222-6. doi: 10.1016/j.ijfoodmicro.2012.02.010. Epub 2012 Feb 23.
9
Concentration of norovirus during wastewater treatment and its impact on oyster contamination.
Appl Environ Microbiol. 2012 May;78(9):3400-6. doi: 10.1128/AEM.07569-11. Epub 2012 Feb 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验