Suppr超能文献

评估64兆赫兹射频磁共振成像体线圈产生的电磁场:去除特征与准确性

Assessing the Electromagnetic Fields Generated By a Radiofrequency MRI Body Coil at 64 MHz: Defeaturing Versus Accuracy.

作者信息

Lucano Elena, Liberti Micaela, Mendoza Gonzalo G, Lloyd Tom, Iacono Maria Ida, Apollonio Francesca, Wedan Steve, Kainz Wolfgang, Angelone Leonardo M

机构信息

Sapienza University of Rome, Italy.

Sapienza University of Rome.

出版信息

IEEE Trans Biomed Eng. 2016 Aug;63(8):1591-1601. doi: 10.1109/TBME.2015.2506680. Epub 2015 Dec 17.

Abstract

GOAL

This study aims at a systematic assessment of five computational models of a birdcage coil for magnetic resonance imaging (MRI) with respect to accuracy and computational cost.

METHODS

The models were implemented using the same geometrical model and numerical algorithm, but different driving methods (i.e., coil "defeaturing"). The defeatured models were labeled as: specific (S2), generic (G32, G16), and hybrid (H16, [Formula: see text]). The accuracy of the models was evaluated using the "symmetric mean absolute percentage error" ("SMAPE"), by comparison with measurements in terms of frequency response, as well as electric ( ||→E||) and magnetic ( || →B ||) field magnitude.

RESULTS

All the models computed the || →B || within 35% of the measurements, only the S2, G32, and H16 were able to accurately model the ||→E|| inside the phantom with a maximum SMAPE of 16%. Outside the phantom, only the S2 showed a SMAPE lower than 11%.

CONCLUSIONS

Results showed that assessing the accuracy of || →B || based only on comparison along the central longitudinal line of the coil can be misleading. Generic or hybrid coils - when properly modeling the currents along the rings/rungs - were sufficient to accurately reproduce the fields inside a phantom while a specific model was needed to accurately model ||→E|| in the space between coil and phantom.

SIGNIFICANCE

Computational modeling of birdcage body coils is extensively used in the evaluation of radiofrequency-induced heating during MRI. Experimental validation of numerical models is needed to determine if a model is an accurate representation of a physical coil.

摘要

目的

本研究旨在对用于磁共振成像(MRI)的鸟笼线圈的五种计算模型在准确性和计算成本方面进行系统评估。

方法

这些模型使用相同的几何模型和数值算法,但采用不同的驱动方法(即线圈“去特征化”)来实现。去特征化模型被标记为:特定(S2)、通用(G32、G16)和混合(H16,[公式:见原文])。通过使用“对称平均绝对百分比误差”(“SMAPE”),并与频率响应、电场(||→E||)和磁场(||→B||)强度的测量值进行比较,来评估模型的准确性。

结果

所有模型计算出的||→B||在测量值的35%以内,只有S2、G32和H16能够准确模拟体模内部的||→E||,最大SMAPE为16%。在体模外部,只有S2的SMAPE低于11%。

结论

结果表明,仅基于沿线圈中心纵线的比较来评估||→B||的准确性可能会产生误导。通用或混合线圈——当对沿环/梯级的电流进行适当建模时——足以准确再现体模内部的场,而需要特定模型来准确模拟线圈与体模之间空间中的||→E||。

意义

鸟笼式体线圈的计算建模在MRI期间射频诱导加热的评估中被广泛使用。需要对数值模型进行实验验证,以确定模型是否准确代表物理线圈。

相似文献

1
Assessing the Electromagnetic Fields Generated By a Radiofrequency MRI Body Coil at 64 MHz: Defeaturing Versus Accuracy.
IEEE Trans Biomed Eng. 2016 Aug;63(8):1591-1601. doi: 10.1109/TBME.2015.2506680. Epub 2015 Dec 17.
3
Magnetic field probe-based co-simulation method for irregular volume-type inductively coupled wireless MRI radiofrequency coils.
Magn Reson Imaging. 2025 Apr;117:110330. doi: 10.1016/j.mri.2025.110330. Epub 2025 Jan 21.
4
RF coil that minimizes electronic components while enhancing performance for rodent MRI at 7 Tesla.
Biomed Phys Eng Express. 2024 Sep 3;10(5). doi: 10.1088/2057-1976/ad7265.
5
Investigating the effect of coil model losses on computational electromagnetic exposure of an ASTM phantom at 64 MHz MRI.
Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:1481-1484. doi: 10.1109/EMBC.2017.8037115.
6
A fast and accurate simulator for the design of birdcage coils in MRI.
MAGMA. 2002 Nov;15(1-3):36-44. doi: 10.1007/BF02693842.
7
Effects of tuning conditions on near field of MRI transmit birdcage coil at 64 MHz.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:6242-6245. doi: 10.1109/EMBC.2016.7592155.
10
An Asymmetric Birdcage Coil for Small-animal MR Imaging at 7T.
Magn Reson Med Sci. 2017 Jul 10;16(3):253-258. doi: 10.2463/mrms.tn.2016-0149. Epub 2016 Sep 30.

引用本文的文献

1
Progress in Understanding Radiofrequency Heating and Burn Injuries for Safer MR Imaging.
Magn Reson Med Sci. 2023 Jan 1;22(1):7-25. doi: 10.2463/mrms.rev.2021-0047. Epub 2022 Feb 26.
2
Exposure Optimization Trial for Patients With Medical Implants During MRI Exposure: Balance Between the Completeness and Efficiency.
Front Public Health. 2021 Dec 13;9:793418. doi: 10.3389/fpubh.2021.793418. eCollection 2021.
3
Machine learning-based prediction of MRI-induced power absorption in the tissue in patients with simplified deep brain stimulation lead models.
IEEE Trans Electromagn Compat. 2021 Oct;63(5):1757-1766. doi: 10.1109/temc.2021.3106872. Epub 2021 Sep 30.
5
Recent Progress in Birdcage RF Coil Technology for MRI System.
Diagnostics (Basel). 2020 Nov 27;10(12):1017. doi: 10.3390/diagnostics10121017.
6
Radio-Frequency Safety Assessment of Stents in Blood Vessels During Magnetic Resonance Imaging.
Front Physiol. 2018 Oct 22;9:1439. doi: 10.3389/fphys.2018.01439. eCollection 2018.
8
Non-calorimetric determination of absorbed power during magnetic nanoparticle based hyperthermia.
Sci Rep. 2018 Aug 23;8(1):12667. doi: 10.1038/s41598-018-30981-x.
10
RF Safety Evaluation of a Breast Tissue Expander Device for MRI: Numerical Simulation and Experiment.
IEEE Trans Electromagn Compat. 2017 Oct;59(5):1390-1399. doi: 10.1109/TEMC.2017.2678201.

本文引用的文献

1
RF-related heating assessment of extracranial neurosurgical implants at 7T.
Magn Reson Imaging. 2013 Jul;31(6):1029-34. doi: 10.1016/j.mri.2012.10.025. Epub 2013 Apr 30.
4
Influence of uncertainties in the material properties of brain tissue on the probabilistic volume of tissue activated.
IEEE Trans Biomed Eng. 2013 May;60(5):1378-87. doi: 10.1109/TBME.2012.2235835. Epub 2012 Dec 21.
5
Evaluation of the RF heating of a generic deep brain stimulator exposed in 1.5 T magnetic resonance scanners.
Bioelectromagnetics. 2013 Feb;34(2):104-13. doi: 10.1002/bem.21745. Epub 2012 Oct 11.
7
Computational and experimental studies of an orthopedic implant: MRI-related heating at 1.5-T/64-MHz and 3-T/128-MHz.
J Magn Reson Imaging. 2013 Feb;37(2):491-7. doi: 10.1002/jmri.23764. Epub 2012 Jul 31.
8
SAR simulations for high-field MRI: how much detail, effort, and accuracy is needed?
Magn Reson Med. 2013 Apr;69(4):1157-68. doi: 10.1002/mrm.24329. Epub 2012 May 18.
9
Resolution adapted finite element modeling of radio frequency interactions on conductive resonant structures in MRI.
Magn Reson Med. 2012 May;67(5):1444-52. doi: 10.1002/mrm.23109. Epub 2011 Nov 10.
10
Local SAR enhancements in anatomically correct children and adult models as a function of position within 1.5 T MR body coil.
Prog Biophys Mol Biol. 2011 Dec;107(3):428-33. doi: 10.1016/j.pbiomolbio.2011.09.017. Epub 2011 Sep 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验