Suppr超能文献

代谢物在癌症表观基因组调控中的区室化作用。

Compartmentation of metabolites in regulating epigenome of cancer.

作者信息

Zhao Zhiqiang, Wang Li, Di Lijun

机构信息

Faculty of Health Sciences, University of Macau, Macau SAR, China.

Metabolomics Core, Faculty of Health Sciences, University of Macau, Macau SAR, China.

出版信息

Mol Med. 2016 Sep;22:349-360. doi: 10.2119/molmed.2016.00051. Epub 2016 Apr 18.

Abstract

Covalent modification of DNA and histones are important epigenetic events and the genome wide reshaping of epigenetic markers is common in cancer. The epigenetic markers are produced by enzymatic reactions and some of these reactions require the presence of metabolites as cofactors (termed Epigenetic Enzyme Required Metabolites, EERMs). Recent studies found that the abundance of these EERMs correlates with epigenetic enzyme activities. Also, the subcellular compartmentation, especially the nuclear localization of these EERMs may play a role in regulating the activities of epigenetic enzymes. Moreover, gene specific recruitment of enzymes which produce the EERMs in the proximity of the epigenetic modification events accompanying the gene expression regulation, were proposed. Therefore, it is of importance to summarize these findings of the EERMs in regulating the epigenetic modifications at both DNA and histone levels, and to understand how EERMs contribute to cancer development by addressing their global versus local distribution.

摘要

DNA和组蛋白的共价修饰是重要的表观遗传事件,表观遗传标记在全基因组范围内的重塑在癌症中很常见。表观遗传标记由酶促反应产生,其中一些反应需要代谢物作为辅助因子(称为表观遗传酶所需代谢物,EERMs)。最近的研究发现,这些EERMs的丰度与表观遗传酶活性相关。此外,亚细胞区室化,特别是这些EERMs的核定位可能在调节表观遗传酶的活性中起作用。此外,有人提出在伴随基因表达调控的表观遗传修饰事件附近,基因特异性招募产生EERMs的酶。因此,总结这些关于EERMs在DNA和组蛋白水平调节表观遗传修饰的发现,并通过研究它们的全局和局部分布来了解EERMs如何促进癌症发展具有重要意义。

相似文献

1
Compartmentation of metabolites in regulating epigenome of cancer.
Mol Med. 2016 Sep;22:349-360. doi: 10.2119/molmed.2016.00051. Epub 2016 Apr 18.
2
Cancer chemoprevention and nutriepigenetics: state of the art and future challenges.
Top Curr Chem. 2013;329:73-132. doi: 10.1007/128_2012_360.
3
Interplay between different epigenetic modifications and mechanisms.
Adv Genet. 2010;70:101-41. doi: 10.1016/B978-0-12-380866-0.60005-8.
5
DNA methylation, histone acetylation and methylation of epigenetic modifications as a therapeutic approach for cancers.
Cancer Lett. 2016 Apr 10;373(2):185-92. doi: 10.1016/j.canlet.2016.01.036. Epub 2016 Jan 22.
6
Epigenetic drift towards histone modifications regulates CAV1 gene expression in colon cancer.
Gene. 2016 Apr 25;581(1):75-84. doi: 10.1016/j.gene.2016.01.029. Epub 2016 Jan 19.
7
Targeting cellular memory to reprogram the epigenome, restore potential, and improve somatic cell nuclear transfer.
Anim Reprod Sci. 2007 Mar;98(1-2):129-46. doi: 10.1016/j.anireprosci.2006.10.019. Epub 2006 Oct 21.
8
Interplay Among Metabolism, Epigenetic Modifications, and Gene Expression in Cancer.
Front Cell Dev Biol. 2021 Dec 24;9:793428. doi: 10.3389/fcell.2021.793428. eCollection 2021.
9
Compendium of aberrant DNA methylation and histone modifications in cancer.
Biochem Biophys Res Commun. 2014 Dec 5;455(1-2):3-9. doi: 10.1016/j.bbrc.2014.08.140. Epub 2014 Sep 4.
10
Epigenetic modifying enzyme expression in asthmatic airway epithelial cells and fibroblasts.
BMC Pulm Med. 2017 Jan 31;17(1):24. doi: 10.1186/s12890-017-0371-0.

引用本文的文献

1
Decoding Cancer through Silencing the Mitochondrial Gatekeeper VDAC1.
Biomolecules. 2024 Oct 15;14(10):1304. doi: 10.3390/biom14101304.
4
VDAC1 at the Intersection of Cell Metabolism, Apoptosis, and Diseases.
Biomolecules. 2020 Oct 26;10(11):1485. doi: 10.3390/biom10111485.
5
The Mitochondrial Protein VDAC1 at the Crossroads of Cancer Cell Metabolism: The Epigenetic Link.
Cancers (Basel). 2020 Apr 22;12(4):1031. doi: 10.3390/cancers12041031.
6
Methylome Variation Predicts Exemestane Resistance in Advanced ER Breast Cancer.
Technol Cancer Res Treat. 2020 Jan-Dec;19:1533033819896331. doi: 10.1177/1533033819896331.
10

本文引用的文献

1
Serine Metabolism Supports the Methionine Cycle and DNA/RNA Methylation through De Novo ATP Synthesis in Cancer Cells.
Mol Cell. 2016 Jan 21;61(2):210-21. doi: 10.1016/j.molcel.2015.12.014. Epub 2016 Jan 7.
2
Insulator dysfunction and oncogene activation in IDH mutant gliomas.
Nature. 2016 Jan 7;529(7584):110-4. doi: 10.1038/nature16490. Epub 2015 Dec 23.
3
AMPK-Dependent Phosphorylation of GAPDH Triggers Sirt1 Activation and Is Necessary for Autophagy upon Glucose Starvation.
Mol Cell. 2015 Dec 17;60(6):930-40. doi: 10.1016/j.molcel.2015.10.037. Epub 2015 Nov 25.
4
Serine and SAM Responsive Complex SESAME Regulates Histone Modification Crosstalk by Sensing Cellular Metabolism.
Mol Cell. 2015 Nov 5;60(3):408-21. doi: 10.1016/j.molcel.2015.09.024. Epub 2015 Oct 29.
5
ACLY and ACC1 Regulate Hypoxia-Induced Apoptosis by Modulating ETV4 via α-ketoglutarate.
PLoS Genet. 2015 Oct 9;11(10):e1005599. doi: 10.1371/journal.pgen.1005599. eCollection 2015 Oct.
6
The rate of glycolysis quantitatively mediates specific histone acetylation sites.
Cancer Metab. 2015 Sep 23;3:10. doi: 10.1186/s40170-015-0135-3. eCollection 2015.
10
The human NAD metabolome: Functions, metabolism and compartmentalization.
Crit Rev Biochem Mol Biol. 2015;50(4):284-97. doi: 10.3109/10409238.2015.1028612. Epub 2015 Apr 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验