文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Nanotechnology in Glycomics: Applications in Diagnostics, Therapy, Imaging, and Separation Processes.

作者信息

Dosekova Erika, Filip Jaroslav, Bertok Tomas, Both Peter, Kasak Peter, Tkac Jan

机构信息

Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38, Bratislava, Slovakia.

Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar.

出版信息

Med Res Rev. 2017 May;37(3):514-626. doi: 10.1002/med.21420. Epub 2016 Nov 15.


DOI:10.1002/med.21420
PMID:27859448
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5659385/
Abstract

This review comprehensively covers the most recent achievements (from 2013) in the successful integration of nanomaterials in the field of glycomics. The first part of the paper addresses the beneficial properties of nanomaterials for the construction of biosensors, bioanalytical devices, and protocols for the detection of various analytes, including viruses and whole cells, together with their key characteristics. The second part of the review focuses on the application of nanomaterials integrated with glycans for various biomedical applications, that is, vaccines against viral and bacterial infections and cancer cells, as therapeutic agents, for in vivo imaging and nuclear magnetic resonance imaging, and for selective drug delivery. The final part of the review describes various ways in which glycan enrichment can be effectively done using nanomaterials, molecularly imprinted polymers with polymer thickness controlled at the nanoscale, with a subsequent analysis of glycans by mass spectrometry. A short section describing an active glycoprofiling by microengines (microrockets) is covered as well.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/eedb6cf67f7a/MED-37-514-g043.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/565ef8be8235/MED-37-514-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/9bcbcc5cdd23/MED-37-514-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/30c3800c9c74/MED-37-514-g044.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/0b51cee9d6b6/MED-37-514-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/78dbc0d8eeed/MED-37-514-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/bf5adabf7def/MED-37-514-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/39477f0b2ce1/MED-37-514-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/d551c76df674/MED-37-514-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/c90098714f60/MED-37-514-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/862038b023c5/MED-37-514-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/058e22c352a0/MED-37-514-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/ba422ea98f8f/MED-37-514-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/50c393c84d31/MED-37-514-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/e940412b2984/MED-37-514-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/b99245a79213/MED-37-514-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/c8efc892911c/MED-37-514-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/48c513d3725b/MED-37-514-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/6737f0878666/MED-37-514-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/ccfcbfc9999f/MED-37-514-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/afc8d136a5a6/MED-37-514-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/4c85d442d542/MED-37-514-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/9be6da535d79/MED-37-514-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/c1d129ac3381/MED-37-514-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/d4aff6a190b1/MED-37-514-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/8918125be2ad/MED-37-514-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/b276bc02ac67/MED-37-514-g025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/da3c0805598e/MED-37-514-g026.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/1ff21cf29aa4/MED-37-514-g027.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/fac7b23f0fa5/MED-37-514-g028.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/03f46e918d40/MED-37-514-g029.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/965c10fee4c1/MED-37-514-g030.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/80480220c4ef/MED-37-514-g031.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/ffd268981dbb/MED-37-514-g032.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/200c08e2a5a6/MED-37-514-g033.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/dea288113f8f/MED-37-514-g034.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/9cfb7a127f57/MED-37-514-g035.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/5c38bfe4a229/MED-37-514-g036.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/69c4800355a2/MED-37-514-g037.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/a5afd72b95f5/MED-37-514-g038.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/956990ffafa9/MED-37-514-g039.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/eaa9c11e77c9/MED-37-514-g040.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/0eca7b8370e2/MED-37-514-g041.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/ea126ed2e82d/MED-37-514-g042.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/eedb6cf67f7a/MED-37-514-g043.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/565ef8be8235/MED-37-514-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/9bcbcc5cdd23/MED-37-514-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/30c3800c9c74/MED-37-514-g044.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/0b51cee9d6b6/MED-37-514-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/78dbc0d8eeed/MED-37-514-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/bf5adabf7def/MED-37-514-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/39477f0b2ce1/MED-37-514-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/d551c76df674/MED-37-514-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/c90098714f60/MED-37-514-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/862038b023c5/MED-37-514-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/058e22c352a0/MED-37-514-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/ba422ea98f8f/MED-37-514-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/50c393c84d31/MED-37-514-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/e940412b2984/MED-37-514-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/b99245a79213/MED-37-514-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/c8efc892911c/MED-37-514-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/48c513d3725b/MED-37-514-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/6737f0878666/MED-37-514-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/ccfcbfc9999f/MED-37-514-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/afc8d136a5a6/MED-37-514-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/4c85d442d542/MED-37-514-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/9be6da535d79/MED-37-514-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/c1d129ac3381/MED-37-514-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/d4aff6a190b1/MED-37-514-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/8918125be2ad/MED-37-514-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/b276bc02ac67/MED-37-514-g025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/da3c0805598e/MED-37-514-g026.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/1ff21cf29aa4/MED-37-514-g027.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/fac7b23f0fa5/MED-37-514-g028.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/03f46e918d40/MED-37-514-g029.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/965c10fee4c1/MED-37-514-g030.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/80480220c4ef/MED-37-514-g031.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/ffd268981dbb/MED-37-514-g032.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/200c08e2a5a6/MED-37-514-g033.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/dea288113f8f/MED-37-514-g034.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/9cfb7a127f57/MED-37-514-g035.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/5c38bfe4a229/MED-37-514-g036.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/69c4800355a2/MED-37-514-g037.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/a5afd72b95f5/MED-37-514-g038.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/956990ffafa9/MED-37-514-g039.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/eaa9c11e77c9/MED-37-514-g040.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/0eca7b8370e2/MED-37-514-g041.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/ea126ed2e82d/MED-37-514-g042.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3faa/6084377/eedb6cf67f7a/MED-37-514-g043.jpg

相似文献

[1]
Nanotechnology in Glycomics: Applications in Diagnostics, Therapy, Imaging, and Separation Processes.

Med Res Rev. 2017-5

[2]
Tunable resistive pulse sensing: potential applications in nanomedicine.

Nanomedicine (Lond). 2016-8-2

[3]
Glyconanotechnology.

Chem Soc Rev. 2013-1-10

[4]
[Applications of chromatography in glycomics].

Se Pu. 2024-7

[5]
Second world conference on nanomedicine and drug delivery.

Ther Deliv. 2011-6

[6]
Functional DNA-containing nanomaterials: cellular applications in biosensing, imaging, and targeted therapy.

Acc Chem Res. 2014-6-17

[7]
Magnetic nanoparticles in nanomedicine: a review of recent advances.

Nanotechnology. 2019-9-6

[8]
Nanotechnology and nanomedicine: going small means aiming big.

Curr Pharm Des. 2010-6

[9]
Gold Nanomaterials: From Preparation to Pharmaceutical Design and Application.

Curr Pharm Des. 2016

[10]
Nanomaterials in the Pharmaceuticals: Occurrence, Behaviour and Applications.

Curr Pharm Des. 2016

引用本文的文献

[1]
Global research landscape on nanotechnology in acute lung injury: a bibliometric analysis.

Front Digit Health. 2025-3-4

[2]
Medical Relevance, State-of-the-Art and Perspectives of "Sweet Metacode" in Liquid Biopsy Approaches.

Diagnostics (Basel). 2024-3-28

[3]
Sialyl-Tn Antigen-Imprinted Dual Fluorescent Core-Shell Nanoparticles for Ratiometric Sialyl-Tn Antigen Detection and Dual-Color Labeling of Cancer Cells.

ACS Appl Nano Mater. 2022-12-23

[4]
Carbon-based glyco-nanoplatforms: towards the next generation of glycan-based multivalent probes.

Chem Soc Rev. 2022-12-12

[5]
Recent advances in nanoparticle-based targeting tactics for antibacterial photodynamic therapy.

Photochem Photobiol Sci. 2022-6

[6]
Recent Developments in the Use of Glyconanoparticles and Related Quantum Dots for the Detection of Lectins, Viruses, Bacteria and Cancer Cells.

Front Chem. 2021-7-19

[7]
Development of a Colorimetric Tool for SARS-CoV-2 and Other Respiratory Viruses Detection Using Sialic Acid Fabricated Gold Nanoparticles.

Pharmaceutics. 2021-4-6

[8]
Glycan Nanobiosensors.

Nanomaterials (Basel). 2020-7-19

[9]
A Graphene-Based Glycan Biosensor for Electrochemical Label-Free Detection of a Tumor-Associated Antibody.

Sensors (Basel). 2019-12-9

[10]
Boronate affinity magnetic nanoparticles with hyperbranched polymer brushes for the adsorption of cis-diol biomolecules.

Mikrochim Acta. 2019-9-16

本文引用的文献

[1]
Template-Free Synthesis of Mesoporous Polymers for Highly Selective Enrichment of Glycopeptides.

ACS Macro Lett. 2015-5-19

[2]
Origami with ABC Triblock Terpolymers Based on Glycopolymers: Creation of Virus-Like Morphologies.

ACS Macro Lett. 2015-5-19

[3]
Sugar/gadolinium-loaded gold nanoparticles for labelling and imaging cells by magnetic resonance imaging.

Biomater Sci. 2013-6-7

[4]
Tuning of glyconanomaterial shape and size for selective bacterial cell agglutination.

J Mater Chem B. 2016-3-21

[5]
Water-soluble hyaluronic acid-hybridized polyaniline nanoparticles for effectively targeted photothermal therapy.

J Mater Chem B. 2015-5-14

[6]
Construction of a cancer-targeted nanosystem as a payload of iron complexes to reverse cancer multidrug resistance.

J Mater Chem B. 2015-6-7

[7]
Graphene oxide based heparin-mimicking and hemocompatible polymeric hydrogels for versatile biomedical applications.

J Mater Chem B. 2015-1-28

[8]
Water-soluble photoluminescent d-mannose and l-alanine functionalized silicon nanocrystals and their application to cancer cell imaging.

J Mater Chem B. 2014-12-21

[9]
Targeted CT imaging of human hepatocellular carcinoma using low-generation dendrimer-entrapped gold nanoparticles modified with lactobionic acid.

J Mater Chem B. 2015-1-14

[10]
Chitosan-coated nano-liposomes for the oral delivery of berberine hydrochloride.

J Mater Chem B. 2014-11-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索