Suppr超能文献

过氧化物酶体增殖物激活受体(PPAR)转录因子在成体神经发生过程中发生的能量代谢转换中的作用。

Roles of PPAR transcription factors in the energetic metabolic switch occurring during adult neurogenesis.

作者信息

Di Giacomo E, Benedetti E, Cristiano L, Antonosante A, d'Angelo M, Fidoamore A, Barone D, Moreno S, Ippoliti R, Cerù M P, Giordano A, Cimini A

机构信息

a Department of Life , Health and Environmental Sciences, University of L'Aquila , L'Aquila , Italy.

b Oncology Research Center of Mercogliano (CROM), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale," IRCCS , Naples , Italy.

出版信息

Cell Cycle. 2017 Jan 2;16(1):59-72. doi: 10.1080/15384101.2016.1252881. Epub 2016 Nov 18.

Abstract

PPARs are a class of ligand-activated transcription factors belonging to the superfamily of receptors for steroid and thyroid hormones, retinoids and vitamin D that control the expression of a large number of genes involved in lipid and carbohydrate metabolism and in the regulation of cell proliferation, differentiation and death. The role of PPARs in the CNS has been primarily associated with lipid and glucose metabolism; however, these receptors are also implicated in neural cell differentiation and death, as well as neuronal maturation. Although it has been demonstrated that PPARs play important roles in determining NSCs fate, less is known about their function in regulating NSCs metabolism during differentiation. In order to identify the metabolic events, controlled by PPARs, occurring during neuronal precursor differentiation, the glucose and lipid metabolism was followed in a recognized model of neuronal differentiation in vitro, the SH-SY5Y neuroblastoma cell line. Moreover, PPARs distribution were also followed in situ in adult mouse brains. The concept of adult neurogenesis becomes relevant especially in view of those disorders in which a loss of neurons is described, such as Alzheimer disease, Parkinson disease, brain injuries and other neurological disorders. Elucidating the crucial steps in energetic metabolism and the involvement of PPARγ in NSC neuronal fate (lineage) may be useful for the future design of preventive and/or therapeutic interventions.

摘要

过氧化物酶体增殖物激活受体(PPARs)是一类配体激活的转录因子,属于类固醇和甲状腺激素、视黄酸和维生素D受体超家族,可控制大量参与脂质和碳水化合物代谢以及细胞增殖、分化和死亡调节的基因的表达。PPARs在中枢神经系统中的作用主要与脂质和葡萄糖代谢有关;然而,这些受体也与神经细胞分化和死亡以及神经元成熟有关。尽管已经证明PPARs在决定神经干细胞命运方面发挥重要作用,但关于它们在分化过程中调节神经干细胞代谢的功能却知之甚少。为了确定在神经元前体分化过程中由PPARs控制的代谢事件,在体外公认的神经元分化模型——SH-SY5Y神经母细胞瘤细胞系中追踪葡萄糖和脂质代谢。此外,还在成年小鼠大脑中对PPARs的分布进行了原位追踪。鉴于诸如阿尔茨海默病、帕金森病、脑损伤和其他神经疾病等描述了神经元丧失的疾病,成体神经发生的概念变得尤为重要。阐明能量代谢中的关键步骤以及PPARγ在神经干细胞神经元命运(谱系)中的作用可能有助于未来预防性和/或治疗性干预措施的设计。

相似文献

1
Roles of PPAR transcription factors in the energetic metabolic switch occurring during adult neurogenesis.
Cell Cycle. 2017 Jan 2;16(1):59-72. doi: 10.1080/15384101.2016.1252881. Epub 2016 Nov 18.
2
PPARs and Energy Metabolism Adaptation during Neurogenesis and Neuronal Maturation.
Int J Mol Sci. 2018 Jun 26;19(7):1869. doi: 10.3390/ijms19071869.
7
A review of the studies on food-derived factors which regulate energy metabolism via the modulation of lipid-sensing nuclear receptors.
Biosci Biotechnol Biochem. 2019 Apr;83(4):579-588. doi: 10.1080/09168451.2018.1559025. Epub 2018 Dec 20.
10
PPARs as Nuclear Receptors for Nutrient and Energy Metabolism.
Molecules. 2019 Jul 12;24(14):2545. doi: 10.3390/molecules24142545.

引用本文的文献

1
Ginsenoside CK modulates glucose metabolism via PPARγ to ameliorate SCOP-induced cognitive dysfunction.
Metab Brain Dis. 2025 Apr 3;40(4):168. doi: 10.1007/s11011-025-01596-9.
2
Rosiglitazone Promotes Oligodendrocyte Development and Myelin Formation of Repeated Neonatal Sevoflurane Exposure via PPARγ Signaling.
Mol Neurobiol. 2025 Feb;62(2):2348-2361. doi: 10.1007/s12035-024-04413-z. Epub 2024 Aug 6.
3
Relapse to cocaine seeking is regulated by medial habenula NR4A2/NURR1 in mice.
Cell Rep. 2024 Mar 26;43(3):113956. doi: 10.1016/j.celrep.2024.113956. Epub 2024 Mar 14.
4
SIRT1-dependent mitochondrial biogenesis supports therapeutic effects of vidarabine against rotenone-induced neural cell injury.
Heliyon. 2023 Oct 26;9(11):e21695. doi: 10.1016/j.heliyon.2023.e21695. eCollection 2023 Nov.
5
PPARα agonist fenofibrate prevents postoperative cognitive dysfunction by enhancing fatty acid oxidation in mice.
Transl Neurosci. 2023 Nov 15;14(1):20220317. doi: 10.1515/tnsci-2022-0317. eCollection 2023 Jan 1.
6
GPR37 expression as a prognostic marker in gliomas: a bioinformatics-based analysis.
Aging (Albany NY). 2023 Oct 13;15(19):10146-10167. doi: 10.18632/aging.205063.
7
Iso-α-acids in Nonalcoholic and Alcoholic Beer Stimulate Growth of Neuron-like SH-SY5Y Cells and Neuroepithelial Stem Cells.
ACS Bio Med Chem Au. 2021 Sep 7;1(1):11-20. doi: 10.1021/acsbiomedchemau.1c00017. eCollection 2021 Dec 15.
8
Single-cell network biology characterizes cell type gene regulation for drug repurposing and phenotype prediction in Alzheimer's disease.
PLoS Comput Biol. 2022 Jul 18;18(7):e1010287. doi: 10.1371/journal.pcbi.1010287. eCollection 2022 Jul.
9
The Strange Case of Jekyll and Hyde: Parallels Between Neural Stem Cells and Glioblastoma-Initiating Cells.
Front Oncol. 2021 Jan 8;10:603738. doi: 10.3389/fonc.2020.603738. eCollection 2020.
10
Neuroprotective effects of human amniotic fluid stem cells-derived secretome in an ischemia/reperfusion model.
Stem Cells Transl Med. 2021 Feb;10(2):251-266. doi: 10.1002/sctm.20-0268. Epub 2020 Oct 7.

本文引用的文献

2
Neuronal Progenitor Maintenance Requires Lactate Metabolism and PEPCK-M-Directed Cataplerosis.
Cereb Cortex. 2016 Mar;26(3):1046-58. doi: 10.1093/cercor/bhu281. Epub 2014 Dec 1.
3
Neurogenic and non-neurogenic functions of endogenous neural stem cells.
Front Neurosci. 2014 Apr 29;8:92. doi: 10.3389/fnins.2014.00092. eCollection 2014.
4
Neurons have an active glycogen metabolism that contributes to tolerance to hypoxia.
J Cereb Blood Flow Metab. 2014 Jun;34(6):945-55. doi: 10.1038/jcbfm.2014.33. Epub 2014 Feb 26.
5
Targeting neuroblastoma stem cells with retinoic acid and proteasome inhibitor.
PLoS One. 2013 Oct 7;8(10):e76761. doi: 10.1371/journal.pone.0076761. eCollection 2013.
6
Neurogenesis in the adult mammalian brain: how much do we need, how much do we have?
Curr Top Behav Neurosci. 2013;15:3-29. doi: 10.1007/7854_2012_227.
7
Adult neural stem cells bridge their niche.
Cell Stem Cell. 2012 Jun 14;10(6):698-708. doi: 10.1016/j.stem.2012.05.012.
8
Adult neurogenesis transiently generates oxidative stress.
PLoS One. 2012;7(4):e35264. doi: 10.1371/journal.pone.0035264. Epub 2012 Apr 30.
9
Adult neurogenesis in the mammalian brain: significant answers and significant questions.
Neuron. 2011 May 26;70(4):687-702. doi: 10.1016/j.neuron.2011.05.001.
10
Signal transduction pathways involved in PPARβ/δ-induced neuronal differentiation.
J Cell Physiol. 2011 Aug;226(8):2170-80. doi: 10.1002/jcp.22552.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验