Suppr超能文献

全球寨卡病毒媒介传播风险模型揭示了 2015 年厄尔尼诺现象的作用。

Global risk model for vector-borne transmission of Zika virus reveals the role of El Niño 2015.

机构信息

Department of Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Liverpool CH64 7TE, United Kingdom;

Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool L69 3GL, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2017 Jan 3;114(1):119-124. doi: 10.1073/pnas.1614303114. Epub 2016 Dec 19.

Abstract

Zika, a mosquito-borne viral disease that emerged in South America in 2015, was declared a Public Health Emergency of International Concern by the WHO in February of 2016. We developed a climate-driven R mathematical model for the transmission risk of Zika virus (ZIKV) that explicitly includes two key mosquito vector species: Aedes aegypti and Aedes albopictus The model was parameterized and calibrated using the most up to date information from the available literature. It was then driven by observed gridded temperature and rainfall datasets for the period 1950-2015. We find that the transmission risk in South America in 2015 was the highest since 1950. This maximum is related to favoring temperature conditions that caused the simulated biting rates to be largest and mosquito mortality rates and extrinsic incubation periods to be smallest in 2015. This event followed the suspected introduction of ZIKV in Brazil in 2013. The ZIKV outbreak in Latin America has very likely been fueled by the 2015-2016 El Niño climate phenomenon affecting the region. The highest transmission risk globally is in South America and tropical countries where Ae. aegypti is abundant. Transmission risk is strongly seasonal in temperate regions where Ae. albopictus is present, with significant risk of ZIKV transmission in the southeastern states of the United States, in southern China, and to a lesser extent, over southern Europe during the boreal summer season.

摘要

寨卡病毒是一种由蚊子传播的病毒性疾病,于 2015 年在南美洲出现,2016 年 2 月世界卫生组织宣布其为国际关注的突发公共卫生事件。我们开发了一种基于气候的寨卡病毒(ZIKV)传播风险的 R 数学模型,该模型明确包括两种关键的蚊子媒介物种:埃及伊蚊和白纹伊蚊。该模型使用来自现有文献的最新信息进行了参数化和校准。然后,它由 1950 年至 2015 年的观测网格化温度和降雨数据集驱动。我们发现,2015 年南美洲的传播风险是自 1950 年以来最高的。这一最大值与有利于温度的条件有关,这些条件导致模拟的叮咬率在 2015 年最大,蚊子死亡率和外潜伏期最小。这一事件紧随 2013 年巴西疑似引入寨卡病毒之后。拉丁美洲的寨卡病毒爆发很可能是由影响该地区的 2015-2016 年厄尔尼诺气候现象所推动。全球传播风险最高的地区是南美洲和热带国家,那里有大量的埃及伊蚊。在存在白纹伊蚊的温带地区,传播风险具有很强的季节性,在美国东南部、中国南部以及欧洲南部的部分地区,寨卡病毒传播的风险很大,尤其是在北方夏季。

相似文献

1
Global risk model for vector-borne transmission of Zika virus reveals the role of El Niño 2015.
Proc Natl Acad Sci U S A. 2017 Jan 3;114(1):119-124. doi: 10.1073/pnas.1614303114. Epub 2016 Dec 19.
3
Zika virus transmission by Brazilian Aedes aegypti and Aedes albopictus is virus dose and temperature-dependent.
PLoS Negl Trop Dis. 2020 Sep 8;14(9):e0008527. doi: 10.1371/journal.pntd.0008527. eCollection 2020 Sep.
6
Vector competence of Australian Aedes aegypti and Aedes albopictus for an epidemic strain of Zika virus.
PLoS Negl Trop Dis. 2019 Apr 4;13(4):e0007281. doi: 10.1371/journal.pntd.0007281. eCollection 2019 Apr.
7
Modeling intra-mosquito dynamics of Zika virus and its dose-dependence confirms the low epidemic potential of Aedes albopictus.
PLoS Pathog. 2020 Dec 31;16(12):e1009068. doi: 10.1371/journal.ppat.1009068. eCollection 2020 Dec.
8
Transmission of Asian Zika Lineage by and Mosquitoes in Florida.
Viruses. 2023 Feb 2;15(2):425. doi: 10.3390/v15020425.
10
Estimation of mosquito-borne and sexual transmission of Zika virus in Australia: Risks to blood transfusion safety.
PLoS Negl Trop Dis. 2020 Jul 14;14(7):e0008438. doi: 10.1371/journal.pntd.0008438. eCollection 2020 Jul.

引用本文的文献

2
Seroprevalence of Zika virus and dengue virus infections in migrants in Italy.
Front Cell Infect Microbiol. 2025 Jul 10;15:1617029. doi: 10.3389/fcimb.2025.1617029. eCollection 2025.
4
Climate Change and Vector-Borne Disease Transmission: The Role of Insect Behavioral and Physiological Adaptations.
Integr Org Biol. 2025 Mar 19;7(1):obaf011. doi: 10.1093/iob/obaf011. eCollection 2025.
5
The effects of seasonal human mobility and Aedes aegypti habitat suitability on Zika virus epidemic severity in Colombia.
PLoS Negl Trop Dis. 2024 Nov 6;18(11):e0012571. doi: 10.1371/journal.pntd.0012571. eCollection 2024 Nov.
6
Features that matter: Evolutionary signatures can predict viral transmission routes.
PLoS Pathog. 2024 Oct 21;20(10):e1012629. doi: 10.1371/journal.ppat.1012629. eCollection 2024 Oct.
7
The global incidence and trends of three common flavivirus infections (Dengue, yellow fever, and Zika) from 2011 to 2021.
Front Microbiol. 2024 Aug 14;15:1458166. doi: 10.3389/fmicb.2024.1458166. eCollection 2024.

本文引用的文献

1
Zika in Rio de Janeiro: Assessment of basic reproduction number and comparison with dengue outbreaks.
Epidemiol Infect. 2017 Jun;145(8):1649-1657. doi: 10.1017/S0950268817000358. Epub 2017 Feb 27.
2
Analyzing climate variations at multiple timescales can guide Zika virus response measures.
Gigascience. 2016 Oct 6;5(1):1-6. doi: 10.1186/s13742-016-0146-1.
3
Zika: the origin and spread of a mosquito-borne virus.
Bull World Health Organ. 2016 Sep 1;94(9):675-686C. doi: 10.2471/BLT.16.171082. Epub 2016 Feb 9.
4
Culex pipiens quinquefasciatus: a potential vector to transmit Zika virus.
Emerg Microbes Infect. 2016 Sep 7;5(9):e102. doi: 10.1038/emi.2016.102.
5
Culex quinquefasciatus from Rio de Janeiro Is Not Competent to Transmit the Local Zika Virus.
PLoS Negl Trop Dis. 2016 Sep 6;10(9):e0004993. doi: 10.1371/journal.pntd.0004993. eCollection 2016 Sep.
6
Potential for Zika virus introduction and transmission in resource-limited countries in Africa and the Asia-Pacific region: a modelling study.
Lancet Infect Dis. 2016 Nov;16(11):1237-1245. doi: 10.1016/S1473-3099(16)30270-5. Epub 2016 Sep 1.
7
Model-based projections of Zika virus infections in childbearing women in the Americas.
Nat Microbiol. 2016 Jul 25;1(9):16126. doi: 10.1038/nmicrobiol.2016.126.
8
Culex Species Mosquitoes and Zika Virus.
Vector Borne Zoonotic Dis. 2016 Oct;16(10):673-6. doi: 10.1089/vbz.2016.2058. Epub 2016 Aug 24.
9
EPIDEMIOLOGY. Countering the Zika epidemic in Latin America.
Science. 2016 Jul 22;353(6297):353-4. doi: 10.1126/science.aag0219. Epub 2016 Jul 14.
10
Mapping global environmental suitability for Zika virus.
Elife. 2016 Apr 19;5:e15272. doi: 10.7554/eLife.15272.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验