Suppr超能文献

相似文献

1
Oxygen Activation at the Active Site of a Fungal Lytic Polysaccharide Monooxygenase.
Angew Chem Int Ed Engl. 2017 Jan 16;56(3):767-770. doi: 10.1002/anie.201610502. Epub 2016 Dec 22.
2
Catalytic Mechanism of Fungal Lytic Polysaccharide Monooxygenases Investigated by First-Principles Calculations.
Inorg Chem. 2018 Jan 2;57(1):86-97. doi: 10.1021/acs.inorgchem.7b02005. Epub 2017 Dec 12.
3
Polysaccharide degradation by lytic polysaccharide monooxygenases.
Curr Opin Struct Biol. 2019 Dec;59:54-64. doi: 10.1016/j.sbi.2019.02.015. Epub 2019 Apr 1.
6
Crystallization of a fungal lytic polysaccharide monooxygenase expressed from glycoengineered Pichia pastoris for X-ray and neutron diffraction.
Acta Crystallogr F Struct Biol Commun. 2017 Feb 1;73(Pt 2):70-78. doi: 10.1107/S2053230X16020318. Epub 2017 Jan 19.
7
A family of starch-active polysaccharide monooxygenases.
Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):13822-7. doi: 10.1073/pnas.1408090111. Epub 2014 Sep 8.
8
Oxidative cleavage of cellulose by fungal copper-dependent polysaccharide monooxygenases.
J Am Chem Soc. 2012 Jan 18;134(2):890-2. doi: 10.1021/ja210657t. Epub 2011 Dec 28.
9
Active-site copper reduction promotes substrate binding of fungal lytic polysaccharide monooxygenase and reduces stability.
J Biol Chem. 2018 Feb 2;293(5):1676-1687. doi: 10.1074/jbc.RA117.000109. Epub 2017 Dec 19.
10
Structural Dynamics of Lytic Polysaccharide Monooxygenase during Catalysis.
Biomolecules. 2020 Feb 5;10(2):242. doi: 10.3390/biom10020242.

引用本文的文献

2
Electron transfer in polysaccharide monooxygenase catalysis.
Proc Natl Acad Sci U S A. 2025 Jan 7;122(1):e2411229121. doi: 10.1073/pnas.2411229121. Epub 2024 Dec 30.
4
The rotamer of the second-sphere histidine in AA9 lytic polysaccharide monooxygenase is pH dependent.
Biophys J. 2024 May 7;123(9):1139-1151. doi: 10.1016/j.bpj.2024.04.002. Epub 2024 Apr 2.
5
Expanding the catalytic landscape of metalloenzymes with lytic polysaccharide monooxygenases.
Nat Rev Chem. 2024 Feb;8(2):106-119. doi: 10.1038/s41570-023-00565-z. Epub 2024 Jan 10.
6
A designed Copper Histidine-brace enzyme for oxidative depolymerization of polysaccharides as a model of lytic polysaccharide monooxygenase.
Proc Natl Acad Sci U S A. 2023 Oct 24;120(43):e2308286120. doi: 10.1073/pnas.2308286120. Epub 2023 Oct 16.
7
Perdeuterated GbpA Enables Neutron Scattering Experiments of a Lytic Polysaccharide Monooxygenase.
ACS Omega. 2023 Jul 31;8(32):29101-29112. doi: 10.1021/acsomega.3c02168. eCollection 2023 Aug 15.
8
A Conserved Second Sphere Residue Tunes Copper Site Reactivity in Lytic Polysaccharide Monooxygenases.
J Am Chem Soc. 2023 Aug 30;145(34):18888-18903. doi: 10.1021/jacs.3c05342. Epub 2023 Aug 16.
9
Joint X-ray/neutron structure of Lentinus similis AA9_A at room temperature.
Acta Crystallogr F Struct Biol Commun. 2023 Jan 1;79(Pt 1):1-7. doi: 10.1107/S2053230X22011335.
10
Capture of activated dioxygen intermediates at the copper-active site of a lytic polysaccharide monooxygenase.
Chem Sci. 2022 Nov 2;13(45):13303-13320. doi: 10.1039/d2sc05031e. eCollection 2022 Nov 23.

本文引用的文献

1
The molecular basis of polysaccharide cleavage by lytic polysaccharide monooxygenases.
Nat Chem Biol. 2016 Apr;12(4):298-303. doi: 10.1038/nchembio.2029. Epub 2016 Feb 29.
2
Neutron protein crystallography: A complementary tool for locating hydrogens in proteins.
Arch Biochem Biophys. 2016 Jul 15;602:48-60. doi: 10.1016/j.abb.2015.11.033. Epub 2015 Nov 22.
3
Catalase improves saccharification of lignocellulose by reducing lytic polysaccharide monooxygenase-associated enzyme inactivation.
Biotechnol Lett. 2016 Mar;38(3):425-34. doi: 10.1007/s10529-015-1989-8. Epub 2015 Nov 5.
4
Cellulose degradation by polysaccharide monooxygenases.
Annu Rev Biochem. 2015;84:923-46. doi: 10.1146/annurev-biochem-060614-034439. Epub 2015 Mar 12.
6
Cellulose surface degradation by a lytic polysaccharide monooxygenase and its effect on cellulase hydrolytic efficiency.
J Biol Chem. 2014 Dec 26;289(52):35929-38. doi: 10.1074/jbc.M114.602227. Epub 2014 Oct 31.
7
Spectroscopic and computational insight into the activation of O2 by the mononuclear Cu center in polysaccharide monooxygenases.
Proc Natl Acad Sci U S A. 2014 Jun 17;111(24):8797-802. doi: 10.1073/pnas.1408115111. Epub 2014 Jun 2.
9
Quantum mechanical calculations suggest that lytic polysaccharide monooxygenases use a copper-oxyl, oxygen-rebound mechanism.
Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):149-54. doi: 10.1073/pnas.1316609111. Epub 2013 Dec 16.
10
The carbohydrate-active enzymes database (CAZy) in 2013.
Nucleic Acids Res. 2014 Jan;42(Database issue):D490-5. doi: 10.1093/nar/gkt1178. Epub 2013 Nov 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验