Institute for Integrative Nanosciences, Institute for Solid State and Materials Research (IFW Dresden e.V.), 01069 Dresden, Germany.
Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, 01328 Dresden, Germany.
Nat Commun. 2017 Jan 3;8:13985. doi: 10.1038/ncomms13985.
Magnetic random access memory schemes employing magnetoelectric coupling to write binary information promise outstanding energy efficiency. We propose and demonstrate a purely antiferromagnetic magnetoelectric random access memory (AF-MERAM) that offers a remarkable 50-fold reduction of the writing threshold compared with ferromagnet-based counterparts, is robust against magnetic disturbances and exhibits no ferromagnetic hysteresis losses. Using the magnetoelectric antiferromagnet CrO, we demonstrate reliable isothermal switching via gate voltage pulses and all-electric readout at room temperature. As no ferromagnetic component is present in the system, the writing magnetic field does not need to be pulsed for readout, allowing permanent magnets to be used. Based on our prototypes, we construct a comprehensive model of the magnetoelectric selection mechanisms in thin films of magnetoelectric antiferromagnets, revealing misfit induced ferrimagnetism as an important factor. Beyond memory applications, the AF-MERAM concept introduces a general all-electric interface for antiferromagnets and should find wide applicability in antiferromagnetic spintronics.
采用磁电耦合写入二进制信息的磁随机存取存储器方案有望实现出色的能量效率。我们提出并演示了一种纯粹的反铁磁磁电随机存取存储器(AF-MERAM),与基于铁磁体的同类产品相比,其写入阈值显著降低了 50 倍,对磁场干扰具有鲁棒性,并且没有铁磁滞回损耗。我们使用磁电反铁磁体 CrO 演示了可靠的等温开关通过栅极电压脉冲和室温下的全电读取。由于系统中不存在铁磁组件,因此不需要写入磁场进行脉冲读取,从而可以使用永磁体。基于我们的原型,我们构建了反铁磁体薄膜中磁电选择机制的综合模型,揭示了失配诱导的亚铁磁性是一个重要因素。除了存储应用之外,AF-MERAM 概念为反铁磁体引入了通用的全电接口,并且应该在反铁磁共振电子学中得到广泛应用。