Li Mao, Cole Joanne B, Manyama Mange, Larson Jacinda R, Liberton Denise K, Riccardi Sheri L, Ferrara Tracey M, Santorico Stephanie A, Bannister Jordan J, Forkert Nils D, Spritz Richard A, Mio Washington, Hallgrimsson Benedikt
Department of Mathematics, Florida State University, Tallahassee, FL, USA.
Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, Aurora, CO, USA.
J Anat. 2017 Apr;230(4):607-618. doi: 10.1111/joa.12576. Epub 2017 Jan 12.
Automated phenotyping is essential for the creation of large, highly standardized datasets from anatomical imaging data. Such datasets can support large-scale studies of complex traits or clinical studies related to precision medicine or clinical trials. We have developed a method that generates three-dimensional landmark data that meet the requirements of standard geometric morphometric analyses. The method is robust and can be implemented without high-performance computing resources. We validated the method using both direct comparison to manual landmarking on the same individuals and also analyses of the variation patterns and outlier patterns in a large dataset of automated and manual landmark data. Direct comparison of manual and automated landmarks reveals that automated landmark data are less variable, but more highly integrated and reproducible. Automated data produce covariation structure that closely resembles that of manual landmarks. We further find that while our method does produce some landmarking errors, they tend to be readily detectable and can be fixed by adjusting parameters used in the registration and control-point steps. Data generated using the method described here have been successfully used to study the genomic architecture of facial shape in two different genome-wide association studies of facial shape.
自动表型分析对于从解剖学成像数据创建大型、高度标准化的数据集至关重要。此类数据集可支持对复杂性状的大规模研究或与精准医学或临床试验相关的临床研究。我们开发了一种方法,可生成满足标准几何形态计量分析要求的三维地标数据。该方法稳健,无需高性能计算资源即可实施。我们通过在同一受试者上与手动地标进行直接比较,以及对自动和手动地标数据的大型数据集中的变异模式和异常值模式进行分析,对该方法进行了验证。手动和自动地标之间的直接比较表明,自动地标数据的变异性较小,但整合性和可重复性更高。自动数据产生的协变结构与手动地标产生的协变结构非常相似。我们进一步发现,虽然我们的方法确实会产生一些地标标记错误,但这些错误往往很容易检测到,并且可以通过调整配准和控制点步骤中使用的参数来修复。使用此处所述方法生成的数据已成功用于两项不同的面部形状全基因组关联研究中,以研究面部形状的基因组结构。