Suppr超能文献

植物对工程金属氧化物纳米颗粒的响应。

Plant Response to Engineered Metal Oxide Nanoparticles.

作者信息

Siddiqi Khwaja Salahuddin, Husen Azamal

机构信息

Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India.

Department of Biology, College of Natural and Computational Sciences, University of Gondar, PO Box #196, Gondar, Ethiopia.

出版信息

Nanoscale Res Lett. 2017 Dec;12(1):92. doi: 10.1186/s11671-017-1861-y. Epub 2017 Feb 6.

Abstract

All metal oxide nanoparticles influence the growth and development of plants. They generally enhance or reduce seed germination, shoot/root growth, biomass production and physiological and biochemical activities. Some plant species have not shown any physiological change, although significant variations in antioxidant enzyme activity and upregulation of heat shock protein have been observed. Plants have evolved antioxidant defence mechanism which involves enzymatic as well as non-enzymatic components to prevent oxidative damage and enhance plant resistance to metal oxide toxicity. The exact mechanism of plant defence against the toxicity of nanomaterials has not been fully explored. The absorption and translocation of metal oxide nanoparticles in different parts of the plant depend on their bioavailability, concentration, solubility and exposure time. Further, these nanoparticles may reach other organisms, animals and humans through food chain which may alter the entire biodiversity. This review attempts to summarize the plant response to a number of metal oxide nanoparticles and their translocation/distribution in root/shoot. The toxicity of metal oxide nanoparticles has also been considered to see if they affect the production of seeds, fruits and the plant biomass as a whole.

摘要

所有金属氧化物纳米颗粒都会影响植物的生长和发育。它们通常会增强或降低种子萌发、地上部/根部生长、生物量生产以及生理和生化活性。尽管观察到抗氧化酶活性有显著变化且热休克蛋白上调,但一些植物物种并未表现出任何生理变化。植物进化出了抗氧化防御机制,该机制涉及酶促和非酶促成分,以防止氧化损伤并增强植物对金属氧化物毒性的抗性。植物抵御纳米材料毒性的确切机制尚未得到充分探索。金属氧化物纳米颗粒在植物不同部位的吸收和转运取决于它们的生物利用度、浓度、溶解度和暴露时间。此外,这些纳米颗粒可能通过食物链到达其他生物体、动物和人类,这可能会改变整个生物多样性。本综述试图总结植物对多种金属氧化物纳米颗粒的反应及其在根/茎中的转运/分布。还考虑了金属氧化物纳米颗粒的毒性,以了解它们是否会影响种子、果实的产量以及整个植物生物量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a83/5293712/5adf1402541c/11671_2017_1861_Fig1_HTML.jpg

相似文献

1
Plant Response to Engineered Metal Oxide Nanoparticles.
Nanoscale Res Lett. 2017 Dec;12(1):92. doi: 10.1186/s11671-017-1861-y. Epub 2017 Feb 6.
2
Co-exposure to titanium dioxide nanoparticles does not affect cadmium toxicity in radish seeds (Raphanus sativus).
Ecotoxicol Environ Saf. 2018 Feb;148:359-366. doi: 10.1016/j.ecoenv.2017.10.051. Epub 2017 Nov 6.
4
Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants.
Rev Environ Contam Toxicol. 2014;232:1-44. doi: 10.1007/978-3-319-06746-9_1.
5
Fabricated nanoparticles: current status and potential phytotoxic threats.
Rev Environ Contam Toxicol. 2014;230:83-110. doi: 10.1007/978-3-319-04411-8_4.
8
Does seed size and surface anatomy play role in combating phytotoxicity of nanoparticles?
Ecotoxicology. 2017 Mar;26(2):238-249. doi: 10.1007/s10646-017-1758-7. Epub 2017 Jan 12.
9
In vivo nanotoxicity assays in plant models.
Methods Mol Biol. 2012;926:399-410. doi: 10.1007/978-1-62703-002-1_26.
10
Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: A critical review.
J Hazard Mater. 2017 Jan 15;322(Pt A):2-16. doi: 10.1016/j.jhazmat.2016.05.061. Epub 2016 May 20.

引用本文的文献

3
DNA damage induced by ZnO and CuO nanoparticles: a comparative study against bulk materials.
Environ Sci Pollut Res Int. 2025 Jun;32(30):18461-18477. doi: 10.1007/s11356-025-36726-4. Epub 2025 Jul 24.
4
Nanofertilizers: smart solutions for sustainable agriculture and the global water crisis.
Planta. 2025 Jun 13;262(2):26. doi: 10.1007/s00425-025-04737-7.
5
Role of Metal-Based Nanoparticles in spp. Plants.
ACS Omega. 2025 Mar 14;10(11):10756-10768. doi: 10.1021/acsomega.4c11102. eCollection 2025 Mar 25.
6
Nanomaterials in Agriculture: A Pathway to Enhanced Plant Growth and Abiotic Stress Resistance.
Plants (Basel). 2025 Feb 26;14(5):716. doi: 10.3390/plants14050716.

本文引用的文献

1
Tansley Review No. 111: Possible roles of zinc in protecting plant cells from damage by reactive oxygen species.
New Phytol. 2000 May;146(2):185-205. doi: 10.1046/j.1469-8137.2000.00630.x.
2
Copper in plants: acquisition, transport and interactions.
Funct Plant Biol. 2009 May;36(5):409-430. doi: 10.1071/FP08288.
3
Recent advances in plant-mediated engineered gold nanoparticles and their application in biological system.
J Trace Elem Med Biol. 2017 Mar;40:10-23. doi: 10.1016/j.jtemb.2016.11.012. Epub 2016 Nov 24.
4
Comparative impacts of iron oxide nanoparticles and ferric ions on the growth of Citrus maxima.
Environ Pollut. 2017 Feb;221:199-208. doi: 10.1016/j.envpol.2016.11.064.
5
Biogenic Fabrication of Iron/Iron Oxide Nanoparticles and Their Application.
Nanoscale Res Lett. 2016 Dec;11(1):498. doi: 10.1186/s11671-016-1714-0. Epub 2016 Nov 11.
6
Green Synthesis, Characterization and Uses of Palladium/Platinum Nanoparticles.
Nanoscale Res Lett. 2016 Dec;11(1):482. doi: 10.1186/s11671-016-1695-z. Epub 2016 Nov 2.
7
Insights into the Response of Soybean Mitochondrial Proteins to Various Sizes of Aluminum Oxide Nanoparticles under Flooding Stress.
J Proteome Res. 2016 Dec 2;15(12):4464-4475. doi: 10.1021/acs.jproteome.6b00572. Epub 2016 Nov 3.
8
Engineered Gold Nanoparticles and Plant Adaptation Potential.
Nanoscale Res Lett. 2016 Dec;11(1):400. doi: 10.1186/s11671-016-1607-2. Epub 2016 Sep 15.
9
Fabrication of Metal and Metal Oxide Nanoparticles by Algae and their Toxic Effects.
Nanoscale Res Lett. 2016 Dec;11(1):363. doi: 10.1186/s11671-016-1580-9. Epub 2016 Aug 17.
10
Iron Oxide Nanoparticles as a Potential Iron Fertilizer for Peanut (Arachis hypogaea).
Front Plant Sci. 2016 Jun 9;7:815. doi: 10.3389/fpls.2016.00815. eCollection 2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验