Rosa Soraia, Connolly Chris, Schettino Giuseppe, Butterworth Karl T, Prise Kevin M
Centre for Cancer Research and Cell Biology, Queens University Belfast, 97 Lisburn Road, Belfast, BT9 7AE Northern Ireland, UK.
National Physical Laboratory, Teddington, London, TW11 0LW UK.
Cancer Nanotechnol. 2017;8(1):2. doi: 10.1186/s12645-017-0026-0. Epub 2017 Feb 2.
There has been growing interest in the use of nanomaterials for a range of biomedical applications over the last number of years. In particular, gold nanoparticles (GNPs) possess a number of unique properties that make them ideal candidates as radiosensitizers on the basis of their strong photoelectric absorption coefficient and ease of synthesis. However, despite promising preclinical evidence in vitro supported by a limited amount of in vivo experiments, along with advances in mechanistic understanding, GNPs have not yet translated into the clinic. This may be due to disparity between predicted levels of radiosensitization based on physical action, observed biological response and an incomplete mechanistic understanding, alongside current experimental limitations. This paper provides a review of the current state of the field, highlighting the potential underlying biological mechanisms in GNP radiosensitization and examining the barriers to clinical translation.
在过去几年中,人们对将纳米材料用于一系列生物医学应用的兴趣日益浓厚。特别是,金纳米颗粒(GNPs)具有许多独特的特性,基于其强光电吸收系数和易于合成的特点,使其成为理想的放射增敏剂候选物。然而,尽管有限的体内实验支持了有前景的临床前体外证据,以及在作用机制理解方面取得了进展,但金纳米颗粒尚未转化应用于临床。这可能是由于基于物理作用预测的放射增敏水平、观察到的生物学反应和不完整的作用机制理解之间存在差异,以及当前的实验局限性。本文综述了该领域的现状,强调了金纳米颗粒放射增敏潜在的生物学机制,并探讨了临床转化的障碍。