Suppr超能文献

公元 775 年有记录以来最强太阳粒子风暴对大气的影响。

Atmospheric impacts of the strongest known solar particle storm of 775 AD.

机构信息

Physikalisch-Meteorologisches Observatorium Davos World Radiation Center, Davos, Switzerland.

Institute for Atmospheric and Climate Science, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland.

出版信息

Sci Rep. 2017 Mar 28;7:45257. doi: 10.1038/srep45257.

Abstract

Sporadic solar energetic particle (SEP) events affect the Earth's atmosphere and environment, in particular leading to depletion of the protective ozone layer in the Earth's atmosphere, and pose potential technological and even life hazards. The greatest SEP storm known for the last 11 millennia (the Holocene) occurred in 774-775 AD, serving as a likely worst-case scenario being 40-50 times stronger than any directly observed one. Here we present a systematic analysis of the impact such an extreme event can have on the Earth's atmosphere. Using state-of-the-art cosmic ray cascade and chemistry-climate models, we successfully reproduce the observed variability of cosmogenic isotope Be, around 775 AD, in four ice cores from Greenland and Antarctica, thereby validating the models in the assessment of this event. We add to prior conclusions that any nitrate deposition signal from SEP events remains too weak to be detected in ice cores by showing that, even for such an extreme solar storm and sub-annual data resolution, the nitrate deposition signal is indistinguishable from the seasonal cycle. We show that such a severe event is able to perturb the polar stratosphere for at least one year, leading to regional changes in the surface temperature during northern hemisphere winters.

摘要

偶发性太阳高能粒子(SEP)事件会影响地球的大气层和环境,特别是导致地球大气层中保护臭氧层的损耗,并对技术甚至生命构成潜在威胁。在过去的 11000 年中(全新世),已知的最大 SEP 风暴发生在公元 774-775 年,可能是比任何直接观测到的风暴强 40-50 倍的最坏情况。在这里,我们系统地分析了这种极端事件对地球大气层的影响。我们使用最先进的宇宙射线级联和化学气候模型,成功地再现了从格陵兰和南极洲的四个冰芯中观测到的约公元 775 年的宇宙成因同位素 Be 的变化,从而验证了模型在评估该事件中的有效性。我们通过表明,即使对于如此极端的太阳风暴和亚年数据分辨率,SEP 事件的硝酸盐沉积信号也无法与季节性周期区分开来,从而对先前的结论进行了补充,即任何来自 SEP 事件的硝酸盐沉积信号都太弱,无法在冰芯中检测到。我们表明,如此严重的事件能够至少扰乱极地平流层一年,导致北半球冬季地表温度的区域性变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fda/5368659/313fc46ec9f5/srep45257-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验