Papi Massimiliano, Palmieri Valentina, Bugli Francesca, De Spirito Marco, Sanguinetti Maurizio, Ciancico Carlotta, Braidotti Maria Chiara, Gentilini Silvia, Angelani Luca, Conti Claudio
Physics Institute, Catholic University of the Sacred Heart (UCSC), Largo Francesco Vito 1, 00168, Rome, Italy.
Institute for Complex Systems, National Research Council (ISC-CNR), Via dei Taurini 19, 00185, Rome, Italy.
Sci Rep. 2016 Dec 5;6(1):12. doi: 10.1038/s41598-016-0010-7.
Antibacterial surfaces have an enormous economic and social impact on the worldwide technological fight against diseases. However, bacteria develop resistance and coatings are often not uniform and not stable in time. The challenge is finding an antibacterial coating that is biocompatible, cost-effective, not toxic, and spreadable over large and irregular surfaces. Here we demonstrate an antibacterial cloak by laser printing of graphene oxide hydrogels mimicking the Cancer Pagurus carapace. We observe up to 90% reduction of bacteria cells. This cloak exploits natural surface patterns evolved to resist to microorganisms infection, and the antimicrobial efficacy of graphene oxide. Cell integrity analysis by scanning electron microscopy and nucleic acids release show bacteriostatic and bactericidal effect. Nucleic acids release demonstrates microorganism cutting, and microscopy reveals cells wrapped by the laser treated gel. A theoretical active matter model confirms our findings. The employment of biomimetic graphene oxide gels opens unique possibilities to decrease infections in biomedical applications and chirurgical equipment; our antibiotic-free approach, based on the geometric reduction of microbial adhesion and the mechanical action of Graphene Oxide sheets, is potentially not affected by bacterial resistance.
抗菌表面在全球对抗疾病的技术斗争中具有巨大的经济和社会影响。然而,细菌会产生耐药性,而且涂层往往不均匀且随时间不稳定。挑战在于找到一种生物相容性好、成本效益高、无毒且能在大的不规则表面上均匀涂抹的抗菌涂层。在此,我们通过激光打印模仿黄道蟹甲壳的氧化石墨烯水凝胶展示了一种抗菌斗篷。我们观察到细菌细胞数量减少了高达90%。这种斗篷利用了自然演化出的抵抗微生物感染的表面图案以及氧化石墨烯的抗菌功效。通过扫描电子显微镜进行的细胞完整性分析和核酸释放显示出抑菌和杀菌作用。核酸释放表明微生物被切断,显微镜观察揭示细胞被激光处理过的凝胶包裹。一个理论活性物质模型证实了我们的发现。仿生氧化石墨烯凝胶的应用为减少生物医学应用和手术设备中的感染开辟了独特的可能性;我们基于微生物粘附的几何减少和氧化石墨烯片的机械作用的无抗生素方法可能不受细菌耐药性的影响。