Institute of Bioengineering and Nanotechnology, Singapore, Singapore.
Institute of Bioengineering and Nanotechnology, Singapore, Singapore.
Nanomedicine. 2017 Oct;13(7):2199-2207. doi: 10.1016/j.nano.2017.06.003. Epub 2017 Jun 11.
Cicada wing surfaces are covered with dense patterns of nano-pillar structure that prevent bacterial growth by rupturing adhered microbial cells. To mimic the natural nano-pillar structure, we developed a general and simple method to grow metal organic framework (MOF) nano-dagger arrays on a wide range of surfaces. These nano-daggers possess high bactericidal activity, with log reduction >7 for Escherichia coli and Staphylococcus aureus. It was hypothesized that the positively-charged ZIF-L nano-dagger surfaces enhance bacterial cell adhesion, facilitating selective and efficient bacteria killing by the rigid and sharp nano-dagger tips. This research provides a safe and clean antimicrobial surface technology which does not require external chemicals and will not cause drug resistance.
蝉翼表面覆盖着密集的纳米柱结构图案,这些结构通过破坏附着的微生物细胞来防止细菌生长。为了模拟天然的纳米柱结构,我们开发了一种通用且简单的方法,可在各种表面上生长金属有机骨架(MOF)纳米匕首阵列。这些纳米匕首具有很强的杀菌活性,对数减少率大于 7,可有效杀灭大肠杆菌和金黄色葡萄球菌。研究假设带正电荷的 ZIF-L 纳米匕首表面可增强细菌细胞的黏附性,有利于通过刚性和锋利的纳米匕首尖端选择性且高效地杀死细菌。这项研究提供了一种安全且清洁的抗菌表面技术,它不需要外部化学物质,也不会引起耐药性。