Suppr超能文献

用于生成各向异性细胞片的电纺聚(N-异丙基丙烯酰胺)/聚(己内酯)纤维。

Electrospun poly(N-isopropyl acrylamide)/poly(caprolactone) fibers for the generation of anisotropic cell sheets.

作者信息

Allen Alicia C B, Barone Elissa, Crosby Cody O Keefe, Suggs Laura J, Zoldan Janet

机构信息

Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.

出版信息

Biomater Sci. 2017 Jul 25;5(8):1661-1669. doi: 10.1039/c7bm00324b.

Abstract

Cell alignment in muscle, nervous tissue, and cartilage is requisite for proper tissue function; however, cell sheeting techniques using the thermosensitive polymer poly(N-isopropyl acrylamide) (PNIPAAm) can only produce anisotropic cell sheets with delicate and resource-intensive modifications. We hypothesized that electrospinning, a relatively simple and inexpensive technique to generate aligned polymer fibers, could be used to fabricate anisotropic PNIPAAm and poly(caprolactone) (PCL) blended surfaces that both support cell viability and permit cell sheet detachment via PNIPAAm dissolution. Aligned electrospun PNIPAAm/PCL fibers (0%, 25%, 50%, 75%, 90%, and 100% PNIPAAm) were electrospun and characterized. Fibers ranged in diameter from 1-3 μm, and all fibers had an orientation index greater than 0.65. Fourier transform infrared spectroscopy was used to confirm the relative content of PNIPAAm and PCL. For advancing water contact angle and mass loss studies, only high PNIPAAm-content fibers (75% and greater) exhibited, temperature-dependent properties like 100% PNIPAAm fibers, whereas 25% and 50% PNIPAAm fibers behaved similarly to PCL-only fibers. 3T3 fibroblasts seeded on all PNIPAAm/PCL fibers had high cell viability and spreading except for the 100% PNIPAAm fibers. Cell sheet detachment by incubation with cold medium was successful only for 90% PNIPAAm fibers, which had a sufficient amount of PCL to allow cell attachment and spreading but not enough to prevent detachment upon PNIPAAm dissolution. This study demonstrates the feasibility of using anisotropic electrospun PNIPAAm/PCL fibers to generate aligned cell sheets that can potentially better recapitulate anisotropic architecture to achieve proper tissue function.

摘要

细胞在肌肉、神经组织和软骨中的排列对于组织的正常功能是必不可少的;然而,使用热敏聚合物聚(N-异丙基丙烯酰胺)(PNIPAAm)的细胞片技术只能通过精细且资源密集型的修饰来生产各向异性的细胞片。我们推测,静电纺丝作为一种相对简单且廉价的制备排列聚合物纤维的技术,可用于制造各向异性的PNIPAAm和聚己内酯(PCL)共混表面,该表面既能支持细胞活力,又能通过PNIPAAm溶解实现细胞片的脱离。对排列的静电纺PNIPAAm/PCL纤维(PNIPAAm含量为0%、25%、50%、75%、90%和100%)进行了静电纺丝和表征。纤维直径范围为1 - 3μm,所有纤维的取向指数均大于0.65。采用傅里叶变换红外光谱法确认PNIPAAm和PCL的相对含量。对于前进接触角和质量损失研究,只有高PNIPAAm含量的纤维(75%及以上)表现出与100% PNIPAAm纤维类似的温度依赖性特性,而25%和50% PNIPAAm纤维的行为与仅PCL纤维相似。接种在所有PNIPAAm/PCL纤维上的3T3成纤维细胞具有较高的细胞活力和铺展性,但100% PNIPAAm纤维除外。仅90% PNIPAAm纤维通过与冷培养基孵育成功实现了细胞片脱离,该纤维含有足够量的PCL以允许细胞附着和铺展,但又不足以阻止PNIPAAm溶解时的细胞片脱离。本研究证明了使用各向异性的静电纺PNIPAAm/PCL纤维来生成排列细胞片的可行性,这种细胞片可能能够更好地重现各向异性结构以实现适当的组织功能。

相似文献

4
Poly(N-isopropylacrylamide)/poly(l-lactic acid-co-ɛ-caprolactone) fibers loaded with ciprofloxacin as wound dressing materials.
Mater Sci Eng C Mater Biol Appl. 2017 Oct 1;79:245-254. doi: 10.1016/j.msec.2017.04.058. Epub 2017 May 5.
5
Star poly(ε-caprolactone)-based electrospun fibers as biocompatible scaffold for doxorubicin with prolonged drug release activity.
Colloids Surf B Biointerfaces. 2018 Jan 1;161:488-496. doi: 10.1016/j.colsurfb.2017.11.014. Epub 2017 Nov 7.
8
Poly(N-isopropylacrylamide) hydrogels with interpenetrating multiwalled carbon nanotubes for cell sheet engineering.
Biomaterials. 2013 Oct;34(30):7328-34. doi: 10.1016/j.biomaterials.2013.06.017. Epub 2013 Jul 1.
9
Enhanced adhesion and proliferation of human umbilical vein endothelial cells on conductive PANI-PCL fiber scaffold by electrical stimulation.
Mater Sci Eng C Mater Biol Appl. 2017 Mar 1;72:106-112. doi: 10.1016/j.msec.2016.11.052. Epub 2016 Nov 16.

引用本文的文献

1
Bioactive cellulose acetate nanofiber loaded with annatto support skeletal muscle cell attachment and proliferation.
Front Bioeng Biotechnol. 2023 Feb 23;11:1116917. doi: 10.3389/fbioe.2023.1116917. eCollection 2023.
2
4D Printing of Hydrogels: Innovation in Material Design and Emerging Smart Systems for Drug Delivery.
Pharmaceuticals (Basel). 2022 Oct 19;15(10):1282. doi: 10.3390/ph15101282.
3
Fabrication of Silk Fibroin-Based Thermoresponsive Hydrogel Nanofibers for Colon Cancer Cell Culture.
Polymers (Basel). 2021 Dec 29;14(1):108. doi: 10.3390/polym14010108.
4
Promoting and Orienting Axon Extension Using Scaffold-Free Dental Pulp Stem Cell Sheets.
ACS Biomater Sci Eng. 2022 Feb 14;8(2):814-825. doi: 10.1021/acsbiomaterials.1c01517. Epub 2022 Jan 4.
5
Scaffolding Biomaterials for 3D Cultivated Meat: Prospects and Challenges.
Adv Sci (Weinh). 2022 Jan;9(3):e2102908. doi: 10.1002/advs.202102908. Epub 2021 Nov 16.
6
Preparation of high precision multilayer scaffolds based on Melt Electro-Writing to repair cartilage injury.
Theranostics. 2020 Aug 13;10(22):10214-10230. doi: 10.7150/thno.47909. eCollection 2020.
9
Non-Destructive Reflectance Mapping of Collagen Fiber Alignment in Heart Valve Leaflets.
Ann Biomed Eng. 2019 May;47(5):1250-1264. doi: 10.1007/s10439-019-02233-0. Epub 2019 Feb 19.
10
Temporal Impact of Substrate Anisotropy on Differentiating Cardiomyocyte Alignment and Functionality.
Tissue Eng Part A. 2019 Oct;25(19-20):1426-1437. doi: 10.1089/ten.TEA.2018.0258. Epub 2019 Aug 20.

本文引用的文献

1
Fabrication of Thermoresponsive Nanofibers for Cell Sorting and Aligned Cell Sheet Engineering.
J Nanosci Nanotechnol. 2016 Jun;16(6):5520-7. doi: 10.1166/jnn.2016.11738.
2
Transforms and Operators for Directional Bioimage Analysis: A Survey.
Adv Anat Embryol Cell Biol. 2016;219:69-93. doi: 10.1007/978-3-319-28549-8_3.
3
Development of 3D Microvascular Networks Within Gelatin Hydrogels Using Thermoresponsive Sacrificial Microfibers.
Adv Healthc Mater. 2016 Apr 6;5(7):781-5. doi: 10.1002/adhm.201500792. Epub 2016 Feb 4.
5
DiameterJ: A validated open source nanofiber diameter measurement tool.
Biomaterials. 2015 Aug;61:327-38. doi: 10.1016/j.biomaterials.2015.05.015. Epub 2015 May 15.
6
In situ particle film ATR FTIR spectroscopy of poly (N-isopropyl acrylamide) (PNIPAM) adsorption onto talc.
Phys Chem Chem Phys. 2014 Dec 7;16(45):25143-51. doi: 10.1039/c4cp03161j.
7
Stem cell-loaded nanofibrous patch promotes the regeneration of infarcted myocardium with functional improvement in rat model.
Acta Biomater. 2014 Jun;10(6):2727-38. doi: 10.1016/j.actbio.2014.02.030. Epub 2014 Feb 24.
8
Fabrication and characterization of multiscale electrospun scaffolds for cartilage regeneration.
Biomed Mater. 2013 Feb;8(1):014103. doi: 10.1088/1748-6041/8/1/014103. Epub 2013 Jan 25.
9
Promoting engraftment of transplanted neural stem cells/progenitors using biofunctionalised electrospun scaffolds.
Biomaterials. 2012 Dec;33(36):9188-97. doi: 10.1016/j.biomaterials.2012.09.013. Epub 2012 Sep 27.
10
Matrix nanotopography as a regulator of cell function.
J Cell Biol. 2012 Apr 30;197(3):351-60. doi: 10.1083/jcb.201108062.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验