Suppr超能文献

不同呼吸条件下人体鼻腔气流的计算建模与验证

Computational modeling and validation of human nasal airflow under various breathing conditions.

作者信息

Li Chengyu, Jiang Jianbo, Dong Haibo, Zhao Kai

机构信息

Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, OH, USA.

Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, USA.

出版信息

J Biomech. 2017 Nov 7;64:59-68. doi: 10.1016/j.jbiomech.2017.08.031. Epub 2017 Sep 5.

Abstract

The human nose serves vital physiological functions, including warming, filtration, humidification, and olfaction. These functions are based on transport phenomena that depend on nasal airflow patterns and turbulence. Accurate prediction of these airflow properties requires careful selection of computational fluid dynamics models and rigorous validation. The validation studies in the past have been limited by poor representations of the complex nasal geometry, lack of detailed airflow comparisons, and restricted ranges of flow rate. The objective of this study is to validate various numerical methods based on an anatomically accurate nasal model against published experimentally measured data under breathing flow rates from 180 to 1100ml/s. The numerical results of velocity profiles and turbulence intensities were obtained using the laminar model, four widely used Reynolds-averaged Navier-Stokes (RANS) turbulence models (i.e., k-ε, standard k-ω, Shear Stress Transport k-ω, and Reynolds Stress Model), large eddy simulation (LES) model, and direct numerical simulation (DNS). It was found that, despite certain irregularity in the flow field, the laminar model achieved good agreement with experimental results under restful breathing condition (180ml/s) and performed better than the RANS models. As the breathing flow rate increased, the RANS models achieved more accurate predictions but still performed worse than LES and DNS. As expected, LES and DNS can provide accurate predictions of the nasal airflow under all flow conditions but have an approximately 100-fold higher computational cost. Among all the RANS models tested, the standard k-ω model agrees most closely with the experimental values in terms of velocity profile and turbulence intensity.

摘要

人类鼻子具有重要的生理功能,包括加热、过滤、加湿和嗅觉。这些功能基于依赖于鼻腔气流模式和湍流的传输现象。准确预测这些气流特性需要仔细选择计算流体动力学模型并进行严格验证。过去的验证研究受到复杂鼻腔几何形状表示不佳、缺乏详细气流比较以及流速范围受限的限制。本研究的目的是基于解剖学精确的鼻腔模型,针对180至1100ml/s呼吸流速下已发表的实验测量数据,验证各种数值方法。使用层流模型、四种广泛使用的雷诺平均纳维-斯托克斯(RANS)湍流模型(即k-ε、标准k-ω、剪切应力传输k-ω和雷诺应力模型)、大涡模拟(LES)模型和直接数值模拟(DNS)获得了速度剖面和湍流强度的数值结果。研究发现,尽管流场存在一定的不规则性,但层流模型在静息呼吸条件(180ml/s)下与实验结果取得了良好的一致性,并且比RANS模型表现更好。随着呼吸流速增加,RANS模型的预测更准确,但仍比LES和DNS表现差。正如预期的那样,LES和DNS可以在所有流速条件下提供准确的鼻腔气流预测,但计算成本大约高100倍。在所有测试的RANS模型中,标准k-ω模型在速度剖面和湍流强度方面与实验值最为接近。

相似文献

4
The effect of turbulence modelling on the assessment of platelet activation.湍流建模对血小板活化评估的影响。
J Biomech. 2021 Nov 9;128:110704. doi: 10.1016/j.jbiomech.2021.110704. Epub 2021 Aug 20.

引用本文的文献

1
Forward Computational Modeling of Respiratory Airflow.呼吸气流的正向计算建模
Appl Sci (Basel). 2024 Dec 2;14(24). doi: 10.3390/app142411591. Epub 2024 Dec 12.
9
Aerodynamic evaluation of surgical design for the stenosis correction of airway.气道狭窄矫正手术设计的空气动力学评估
Front Cardiovasc Med. 2024 Mar 28;11:1359844. doi: 10.3389/fcvm.2024.1359844. eCollection 2024.

本文引用的文献

5
Dynamics of airflow in a short inhalation.短时间吸气时的气流动力学
J R Soc Interface. 2015 Jan 6;12(102):20140880. doi: 10.1098/rsif.2014.0880.
9
On locating the obstruction in the upper airway via numerical simulation.通过数值模拟定位上呼吸道中的阻塞物。
Respir Physiol Neurobiol. 2014 Mar 1;193:1-10. doi: 10.1016/j.resp.2013.12.009. Epub 2013 Dec 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验