Shashikumar Supreeth P, Stanley Matthew D, Sadiq Ismail, Li Qiao, Holder Andre, Clifford Gari D, Nemati Shamim
Department of Electrical and Computer Engineering, Georgia Institute of Technology, United States.
Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States.
J Electrocardiol. 2017 Nov-Dec;50(6):739-743. doi: 10.1016/j.jelectrocard.2017.08.013. Epub 2017 Aug 16.
Sepsis remains a leading cause of morbidity and mortality among intensive care unit (ICU) patients. For each hour treatment initiation is delayed after diagnosis, sepsis-related mortality increases by approximately 8%. Therefore, maximizing effective care requires early recognition and initiation of treatment protocols. Antecedent signs and symptoms of sepsis can be subtle and unrecognizable (e.g., loss of autonomic regulation of vital signs), causing treatment delays and harm to the patient. In this work we investigated the utility of high-resolution blood pressure (BP) and heart rate (HR) times series dynamics for the early prediction of sepsis in patients from an urban, academic hospital, meeting the third international consensus definition of sepsis (sepsis-III) during their ICU admission. Using a multivariate modeling approach we found that HR and BP dynamics at multiple time-scales are independent predictors of sepsis, even after adjusting for commonly measured clinical values and patient demographics and comorbidities. Earlier recognition and diagnosis of sepsis has the potential to decrease sepsis-related morbidity and mortality through earlier initiation of treatment protocols.
脓毒症仍然是重症监护病房(ICU)患者发病和死亡的主要原因。诊断后每延迟一小时开始治疗,脓毒症相关死亡率就会增加约8%。因此,要实现有效的护理最大化,就需要早期识别并启动治疗方案。脓毒症的前期体征和症状可能很细微且难以识别(例如,生命体征自主调节功能丧失),从而导致治疗延迟并对患者造成伤害。在这项研究中,我们调查了高分辨率血压(BP)和心率(HR)时间序列动态变化在一家城市学术医院的患者中早期预测脓毒症的效用,这些患者在ICU住院期间符合脓毒症的第三次国际共识定义(脓毒症-III)。使用多变量建模方法,我们发现即使在调整了常用的临床测量值、患者人口统计学特征和合并症之后,多个时间尺度上的HR和BP动态变化仍是脓毒症的独立预测因素。通过更早地启动治疗方案,更早地识别和诊断脓毒症有可能降低脓毒症相关的发病率和死亡率。