Suppr超能文献

利用多尺度血压和心率动态变化对重症监护患者进行早期脓毒症检测。

Early sepsis detection in critical care patients using multiscale blood pressure and heart rate dynamics.

作者信息

Shashikumar Supreeth P, Stanley Matthew D, Sadiq Ismail, Li Qiao, Holder Andre, Clifford Gari D, Nemati Shamim

机构信息

Department of Electrical and Computer Engineering, Georgia Institute of Technology, United States.

Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States.

出版信息

J Electrocardiol. 2017 Nov-Dec;50(6):739-743. doi: 10.1016/j.jelectrocard.2017.08.013. Epub 2017 Aug 16.

Abstract

Sepsis remains a leading cause of morbidity and mortality among intensive care unit (ICU) patients. For each hour treatment initiation is delayed after diagnosis, sepsis-related mortality increases by approximately 8%. Therefore, maximizing effective care requires early recognition and initiation of treatment protocols. Antecedent signs and symptoms of sepsis can be subtle and unrecognizable (e.g., loss of autonomic regulation of vital signs), causing treatment delays and harm to the patient. In this work we investigated the utility of high-resolution blood pressure (BP) and heart rate (HR) times series dynamics for the early prediction of sepsis in patients from an urban, academic hospital, meeting the third international consensus definition of sepsis (sepsis-III) during their ICU admission. Using a multivariate modeling approach we found that HR and BP dynamics at multiple time-scales are independent predictors of sepsis, even after adjusting for commonly measured clinical values and patient demographics and comorbidities. Earlier recognition and diagnosis of sepsis has the potential to decrease sepsis-related morbidity and mortality through earlier initiation of treatment protocols.

摘要

脓毒症仍然是重症监护病房(ICU)患者发病和死亡的主要原因。诊断后每延迟一小时开始治疗,脓毒症相关死亡率就会增加约8%。因此,要实现有效的护理最大化,就需要早期识别并启动治疗方案。脓毒症的前期体征和症状可能很细微且难以识别(例如,生命体征自主调节功能丧失),从而导致治疗延迟并对患者造成伤害。在这项研究中,我们调查了高分辨率血压(BP)和心率(HR)时间序列动态变化在一家城市学术医院的患者中早期预测脓毒症的效用,这些患者在ICU住院期间符合脓毒症的第三次国际共识定义(脓毒症-III)。使用多变量建模方法,我们发现即使在调整了常用的临床测量值、患者人口统计学特征和合并症之后,多个时间尺度上的HR和BP动态变化仍是脓毒症的独立预测因素。通过更早地启动治疗方案,更早地识别和诊断脓毒症有可能降低脓毒症相关的发病率和死亡率。

相似文献

1
Early sepsis detection in critical care patients using multiscale blood pressure and heart rate dynamics.
J Electrocardiol. 2017 Nov-Dec;50(6):739-743. doi: 10.1016/j.jelectrocard.2017.08.013. Epub 2017 Aug 16.
2
An Interpretable Machine Learning Model for Accurate Prediction of Sepsis in the ICU.
Crit Care Med. 2018 Apr;46(4):547-553. doi: 10.1097/CCM.0000000000002936.
3
Multiscale network representation of physiological time series for early prediction of sepsis.
Physiol Meas. 2017 Nov 30;38(12):2235-2248. doi: 10.1088/1361-6579/aa9772.
4
Machine Learning Models for Analysis of Vital Signs Dynamics: A Case for Sepsis Onset Prediction.
J Healthc Eng. 2019 Nov 3;2019:5930379. doi: 10.1155/2019/5930379. eCollection 2019.
5
Heart rate variability as predictor of mortality in sepsis: A prospective cohort study.
PLoS One. 2017 Jun 27;12(6):e0180060. doi: 10.1371/journal.pone.0180060. eCollection 2017.
6
Impact of implementation of the National Early Warning Score on patients and staff.
Br J Hosp Med (Lond). 2017 Mar 2;78(3):132-136. doi: 10.12968/hmed.2017.78.3.132.
7
A Time-Phased Machine Learning Model for Real-Time Prediction of Sepsis in Critical Care.
Crit Care Med. 2020 Oct;48(10):e884-e888. doi: 10.1097/CCM.0000000000004494.
8
Early hospital mortality prediction of intensive care unit patients using an ensemble learning approach.
Int J Med Inform. 2017 Dec;108:185-195. doi: 10.1016/j.ijmedinf.2017.10.002. Epub 2017 Oct 5.
9
Kernel density estimates for sepsis classification.
Comput Methods Programs Biomed. 2020 May;188:105295. doi: 10.1016/j.cmpb.2019.105295. Epub 2019 Dec 24.

引用本文的文献

1
Exploring the Potentials of Artificial Intelligence in Sepsis Management in the Intensive Care Unit.
Crit Care Res Pract. 2025 Aug 28;2025:9031137. doi: 10.1155/ccrp/9031137. eCollection 2025.
2
Machine learning model for daily prediction of pediatric sepsis using Phoenix criteria.
Pediatr Res. 2025 Jun 19. doi: 10.1038/s41390-025-04221-8.
3
4
Decoding Inflammation: Predicting Sepsis in the ICU.
Cureus. 2024 Dec 7;16(12):e75256. doi: 10.7759/cureus.75256. eCollection 2024 Dec.
6
Early detection of sepsis using machine learning algorithms: a systematic review and network meta-analysis.
Front Med (Lausanne). 2024 Oct 16;11:1491358. doi: 10.3389/fmed.2024.1491358. eCollection 2024.
7
Predictive modeling of biomedical temporal data in healthcare applications: review and future directions.
Front Physiol. 2024 Oct 15;15:1386760. doi: 10.3389/fphys.2024.1386760. eCollection 2024.
9
Impact of wearable device data and multi-scale entropy analysis on improving hospital readmission prediction.
J Am Med Inform Assoc. 2024 Nov 1;31(11):2679-2688. doi: 10.1093/jamia/ocae242.
10
Establishment of a Predictive Model for Acute Respiratory Distress Syndrome in Patients with Bacterial Pneumonia.
J Inflamm Res. 2024 May 8;17:2825-2834. doi: 10.2147/JIR.S458690. eCollection 2024.

本文引用的文献

1
Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016.
Intensive Care Med. 2017 Mar;43(3):304-377. doi: 10.1007/s00134-017-4683-6. Epub 2017 Jan 18.
2
A Model-Based Machine Learning Approach to Probing Autonomic Regulation From Nonstationary Vital-Sign Time Series.
IEEE J Biomed Health Inform. 2018 Jan;22(1):56-66. doi: 10.1109/JBHI.2016.2636808. Epub 2016 Dec 7.
4
Predicting the Future - Big Data, Machine Learning, and Clinical Medicine.
N Engl J Med. 2016 Sep 29;375(13):1216-9. doi: 10.1056/NEJMp1606181.
5
MIMIC-III, a freely accessible critical care database.
Sci Data. 2016 May 24;3:160035. doi: 10.1038/sdata.2016.35.
6
The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3).
JAMA. 2016 Feb 23;315(8):801-10. doi: 10.1001/jama.2016.0287.
9
From vital signs to clinical outcomes for patients with sepsis: a machine learning basis for a clinical decision support system.
J Am Med Inform Assoc. 2014 Mar-Apr;21(2):315-25. doi: 10.1136/amiajnl-2013-001815. Epub 2013 Aug 19.
10
Respiration and heart rate complexity: effects of age and gender assessed by band-limited transfer entropy.
Respir Physiol Neurobiol. 2013 Oct 1;189(1):27-33. doi: 10.1016/j.resp.2013.06.016. Epub 2013 Jun 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验