Du Junwei, Schmall Jeffrey P, Judenhofer Martin S, Di Kun, Yang Yongfeng, Cherry Simon R
Department of Biomedical Engineering, University of California, Davis, CA 95616 USA.
Department of Biomedical Engineering, University of California.
IEEE Trans Radiat Plasma Med Sci. 2017 Sep;1(5):385-390. doi: 10.1109/TRPMS.2017.2726534. Epub 2017 Jul 13.
The leading edge timing pick-off technique is the simplest timing extraction method for PET detectors. Due to the inherent time-walk of the leading edge technique, corrections should be made to improve timing resolution, especially for time-of-flight PET. Time-walk correction can be done by utilizing the relationship between the threshold crossing time and the event energy on an event by event basis. In this paper, a time-walk correction method is proposed and evaluated using timing information from two identical detectors both using leading edge discriminators. This differs from other techniques that use an external dedicated reference detector, such as a fast PMT-based detector using constant fraction techniques to pick-off timing information. In our proposed method, one detector was used as reference detector to correct the time-walk of the other detector. Time-walk in the reference detector was minimized by using events within a small energy window (508.5 - 513.5 keV). To validate this method, a coincidence detector pair was assembled using two SensL MicroFB SiPMs and two 2.5 mm × 2.5 mm × 20 mm polished LYSO crystals. Coincidence timing resolutions using different time pick-off techniques were obtained at a bias voltage of 27.5 V and a fixed temperature of 20 °C. The coincidence timing resolution without time-walk correction were 389.0 ± 12.0 ps (425 -650 keV energy window) and 670.2 ± 16.2 ps (250-750 keV energy window). The timing resolution with time-walk correction improved to 367.3 ± 0.5 ps (425 - 650 keV) and 413.7 ± 0.9 ps (250 - 750 keV). For comparison, timing resolutions were 442.8 ± 12.8 ps (425 - 650 keV) and 476.0 ± 13.0 ps (250 - 750 keV) using constant fraction techniques, and 367.3 ± 0.4 ps (425 - 650 keV) and 413.4 ± 0.9 ps (250 - 750 keV) using a reference detector based on the constant fraction technique. These results show that the proposed leading edge based time-walk correction method works well. Timing resolution obtained using this method was equivalent to that obtained using a reference detector and was better than that obtained using constant fraction discriminators.
前沿定时提取技术是用于正电子发射断层扫描(PET)探测器的最简单的定时提取方法。由于前沿技术固有的时间游动,应进行校正以提高定时分辨率,特别是对于飞行时间PET。时间游动校正可以通过在逐个事件的基础上利用阈值穿越时间与事件能量之间的关系来完成。在本文中,提出了一种时间游动校正方法,并使用来自两个均使用前沿鉴别器的相同探测器的定时信息进行了评估。这与其他使用外部专用参考探测器的技术不同,例如使用恒定分数技术的基于快速光电倍增管(PMT)的探测器来提取定时信息。在我们提出的方法中,一个探测器用作参考探测器以校正另一个探测器的时间游动。通过使用小能量窗口(508.5 - 513.5 keV)内的事件,使参考探测器中的时间游动最小化。为了验证该方法,使用两个SensL MicroFB硅光电倍增管(SiPM)和两个2.5 mm×2.5 mm×20 mm抛光的硅酸钇镥(LYSO)晶体组装了一个符合探测器对。在27.5 V的偏置电压和20°C的固定温度下,获得了使用不同定时提取技术的符合定时分辨率。未进行时间游动校正时的符合定时分辨率为389.0±12.0 ps(425 - 650 keV能量窗口)和670.2±16.2 ps(250 - 750 keV能量窗口)。进行时间游动校正后的定时分辨率提高到367.3±0.5 ps(425 - 650 keV)和413.7±0.9 ps(250 - 750 keV)。作为比较,使用恒定分数技术时的定时分辨率为442.8±12.8 ps(425 - 650 keV)和476.0±13.0 ps(250 - 750 keV),而使用基于恒定分数技术的参考探测器时的定时分辨率为367.3±0.4 ps(425 - 650 keV)和413.4±0.9 ps(250 - 750 keV)。这些结果表明,所提出的基于前沿的时间游动校正方法效果良好。使用该方法获得的定时分辨率与使用参考探测器获得的定时分辨率相当,并且优于使用恒定分数鉴别器获得的定时分辨率。