Suppr超能文献

从哺乳动物视网膜中对复杂电影进行非线性解码。

Nonlinear decoding of a complex movie from the mammalian retina.

机构信息

Institute of Science and Technology Austria, Klosterneuburg, Austria.

Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France.

出版信息

PLoS Comput Biol. 2018 May 10;14(5):e1006057. doi: 10.1371/journal.pcbi.1006057. eCollection 2018 May.

Abstract

Retina is a paradigmatic system for studying sensory encoding: the transformation of light into spiking activity of ganglion cells. The inverse problem, where stimulus is reconstructed from spikes, has received less attention, especially for complex stimuli that should be reconstructed "pixel-by-pixel". We recorded around a hundred neurons from a dense patch in a rat retina and decoded movies of multiple small randomly-moving discs. We constructed nonlinear (kernelized and neural network) decoders that improved significantly over linear results. An important contribution to this was the ability of nonlinear decoders to reliably separate between neural responses driven by locally fluctuating light signals, and responses at locally constant light driven by spontaneous-like activity. This improvement crucially depended on the precise, non-Poisson temporal structure of individual spike trains, which originated in the spike-history dependence of neural responses. We propose a general principle by which downstream circuitry could discriminate between spontaneous and stimulus-driven activity based solely on higher-order statistical structure in the incoming spike trains.

摘要

视网膜是研究感觉编码的典型系统

将光转化为神经节细胞的尖峰活动。刺激从尖峰重建的逆问题受到的关注较少,特别是对于应该“逐像素”重建的复杂刺激。我们从大鼠视网膜的一个密集斑块中记录了大约一百个神经元,并解码了多个小的随机移动圆盘的电影。我们构建了非线性(核化和神经网络)解码器,这些解码器比线性解码器有显著的改进。非线性解码器能够可靠地区分由局部波动的光信号驱动的神经反应,以及由自发样活动驱动的局部恒定光的反应,这对结果有重要贡献。这种改进主要取决于单个尖峰序列的精确、非泊松时间结构,而这种结构源于神经反应的尖峰历史依赖性。我们提出了一个一般原则,即下游电路可以仅根据传入尖峰序列中的高阶统计结构来区分自发活动和刺激驱动的活动。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63f1/5944913/eaabd39aa612/pcbi.1006057.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验