Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK.
Healx Ltd, Park House, Castle Park, Cambridge, UK.
Bioinformatics. 2019 Apr 1;35(7):1213-1220. doi: 10.1093/bioinformatics/bty754.
Combining disease relationships across multiple biological levels could aid our understanding of common processes taking place in disease, potentially indicating opportunities for drug sharing. Here, we propose a similarity fusion approach which accounts for differences in information content between different data types, allowing combination of each data type in a balanced manner.
We apply this method to six different types of biological data (ontological, phenotypic, literature co-occurrence, genetic association, gene expression and drug indication data) for 84 diseases to create a 'disease map': a network of diseases connected at one or more biological levels. As well as reconstructing known disease relationships, 15% of links in the disease map are novel links spanning traditional ontological classes, such as between psoriasis and inflammatory bowel disease. 62% of links in the disease map represent drug-sharing relationships, illustrating the relevance of the similarity fusion approach to the identification of potential therapeutic relationships.
Freely available under the MIT license at https://github.com/e-oerton/disease-similarity-fusion.
Supplementary data are available at Bioinformatics online.
在多个生物学层次上结合疾病关系可以帮助我们理解疾病中发生的常见过程,可能为药物共享提供机会。在这里,我们提出了一种相似性融合方法,该方法考虑了不同数据类型之间的信息内容差异,允许以平衡的方式组合每种数据类型。
我们将该方法应用于六种不同类型的生物数据(本体论、表型、文献共现、遗传关联、基因表达和药物适应症数据),共 84 种疾病,以创建一个“疾病图谱”:一个在一个或多个生物学水平上连接的疾病网络。除了重建已知的疾病关系外,疾病图谱中的 15%的链接是跨越传统本体类的新链接,例如银屑病和炎症性肠病之间的链接。疾病图谱中的 62%的链接代表药物共享关系,这说明了相似性融合方法对于识别潜在治疗关系的相关性。
在 MIT 许可证下可在 https://github.com/e-oerton/disease-similarity-fusion 上免费获得。
补充数据可在 Bioinformatics 在线获得。