Suppr超能文献

基于生长模式的胎儿皮质分区

FETAL CORTICAL PARCELLATION BASED ON GROWTH PATTERNS.

作者信息

Xia Jing, Zhang Caiming, Wang Fan, Benkarim Oualid M, Sanroma Gerard, Piella Gemma, González Balleste Miguel A, Hahner Nadine, Eixarch Elisenda, Shen Dinggang, Li Gang

机构信息

Department of Computer Science and Technology, Shandong University, Shandong, China.

Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:696-699. doi: 10.1109/ISBI.2018.8363669. Epub 2018 May 24.

Abstract

Dividing the human cerebral cortex into structurally and functionally distinct regions is important in many neuroimaging studies. Although many parcellations have been created for adults, they are not applicable for fetal studies, due to dramatic differences in brain size, shape and folding between adults and fetuses, as well as dynamic growth of fetal brains. To address this issue, we propose a novel method to divide a population of fetal cortical surfaces into distinct regions based on the dynamic growth patterns of cortical properties, which indicate the underlying changes of microstructures. As microstructures determine the molecular organization and functional principles of the cortex, growth patterns enable an accurate definition of distinct regions in development, microstructure, and function. To comprehensively capture the similarities of cortical growth patterns among vertices, we construct two complementary similarity matrices. One is directly based on the growth trajectories of vertices and the other is based on the correlation profiles of vertices' growth trajectories in relation to those of reference points. Then, we nonlinearly fuse these two similarity matrices into a single one, which can better captures both their common and complementary information than by simply averaging them. Finally, based on this fused matrix, we perform spectral clustering to divide fetal cortical surfaces into distinct regions. We have applied our method on 25 normal fetuses from 26 to 29 gestational weeks and generated biologically meaningful parcellations.

摘要

在许多神经影像学研究中,将人类大脑皮层划分为结构和功能上不同的区域非常重要。尽管已经为成年人创建了许多脑区划分方法,但由于成年人和胎儿在大脑大小、形状和折叠方式上存在显著差异,以及胎儿大脑的动态生长,这些方法不适用于胎儿研究。为了解决这个问题,我们提出了一种新方法,根据皮层属性的动态生长模式将胎儿皮层表面群体划分为不同区域,这些生长模式指示了微观结构的潜在变化。由于微观结构决定了皮层的分子组织和功能原理,生长模式能够在发育、微观结构和功能方面准确地定义不同区域。为了全面捕捉顶点之间皮层生长模式的相似性,我们构建了两个互补的相似性矩阵。一个直接基于顶点的生长轨迹,另一个基于顶点生长轨迹与参考点生长轨迹的相关性剖面。然后,我们将这两个相似性矩阵非线性融合为一个单一矩阵,与简单平均相比,它能更好地捕捉它们的共同和互补信息。最后,基于这个融合矩阵,我们进行谱聚类,将胎儿皮层表面划分为不同区域。我们已将我们的方法应用于25例孕26至29周的正常胎儿,并生成了具有生物学意义的脑区划分。

相似文献

1
FETAL CORTICAL PARCELLATION BASED ON GROWTH PATTERNS.基于生长模式的胎儿皮质分区
Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:696-699. doi: 10.1109/ISBI.2018.8363669. Epub 2018 May 24.
2
Fetal cortical surface atlas parcellation based on growth patterns.基于生长模式的胎儿皮质表面图谱分割。
Hum Brain Mapp. 2019 Sep;40(13):3881-3899. doi: 10.1002/hbm.24637. Epub 2019 May 20.
5
Developmental Patterns Based Individualized Parcellation of Infant Cortical Surface.基于发育模式的婴儿皮质表面个体化分割
Med Image Comput Comput Assist Interv. 2017 Sep;10433:66-74. doi: 10.1007/978-3-319-66182-7_8. Epub 2017 Sep 4.
9
Exploring Gyral Patterns of Infant Cortical Folding based on Multi-view Curvature Information.基于多视图曲率信息探索婴儿皮质折叠的脑回模式。
Med Image Comput Comput Assist Interv. 2017 Sep;10433:12-20. doi: 10.1007/978-3-319-66182-7_2. Epub 2017 Sep 4.

引用本文的文献

1
SPHERICAL U-NET FOR INFANT CORTICAL SURFACE PARCELLATION.用于婴儿皮质表面分割的球形U-Net
Proc IEEE Int Symp Biomed Imaging. 2019 Apr;2019:1882-1886. doi: 10.1109/ISBI.2019.8759537. Epub 2019 Jul 11.

本文引用的文献

8
Quantitative in vivo MRI measurement of cortical development in the fetus.胎儿皮质发育的活体定量 MRI 测量。
Brain Struct Funct. 2012 Jan;217(1):127-39. doi: 10.1007/s00429-011-0325-x. Epub 2011 May 12.
9
Centenary of Brodmann's map--conception and fate.布罗德曼大脑皮质分区图谱诞生百年——构想与命运
Nat Rev Neurosci. 2010 Feb;11(2):139-45. doi: 10.1038/nrn2776. Epub 2010 Jan 4.
10
Spherical demons: fast diffeomorphic landmark-free surface registration.球形恶魔:快速的非刚性地标自由表面配准。
IEEE Trans Med Imaging. 2010 Mar;29(3):650-68. doi: 10.1109/TMI.2009.2030797. Epub 2009 Aug 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验