Gill Elisabeth L, Li Xia, Birch Mark A, Huang Yan Yan Shery
1Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ UK.
2Division of Trauma and Orthopaedic Surgery, Department of Surgery, University of Cambridge, Cambridge, UK.
Biodes Manuf. 2018;1(2):77-88. doi: 10.1007/s42242-018-0014-1. Epub 2018 May 25.
It is envisaged that the creation of cellular environments at multiple length scales, that recapitulate in vivo bioactive and structural roles, may hold the key to creating functional, complex tissues in the laboratory. This review considers recent advances in biofabrication and bioprinting techniques across different length scales. Particular focus is placed on 3D printing of hydrogels and fabrication of biomaterial fibres that could extend the feature resolution and material functionality of soft tissue constructs. The outlook from this review discusses how one might create and simulate microenvironmental cues in vitro. A fabrication platform that integrates the competencies of different biofabrication technologies is proposed. Such a multi-process, multiscale fabrication strategy may ultimately translate engineering capability into an accessible life sciences toolkit, fulfilling its potential to deliver in vitro disease models and engineered tissue implants.
设想在多个长度尺度上创建细胞环境,以重现体内生物活性和结构作用,这可能是在实验室中创建功能性复杂组织的关键。本综述探讨了不同长度尺度上生物制造和生物打印技术的最新进展。特别关注水凝胶的3D打印和生物材料纤维的制造,这可以扩展软组织构建体的特征分辨率和材料功能。本综述的展望讨论了如何在体外创建和模拟微环境线索。提出了一个整合不同生物制造技术能力的制造平台。这种多过程、多尺度的制造策略最终可能将工程能力转化为一个易于使用的生命科学工具包,实现其提供体外疾病模型和工程组织植入物的潜力。