Department of Engineering, University of Cambridge, Cambridge, United Kingdom.
The Nanoscience Centre, University of Cambridge, Cambridge, United Kingdom.
Nat Commun. 2021 Oct 29;12(1):6260. doi: 10.1038/s41467-021-26491-6.
Cochlear implants restore hearing in patients with severe to profound deafness by delivering electrical stimuli inside the cochlea. Understanding stimulus current spread, and how it correlates to patient-dependent factors, is hampered by the poor accessibility of the inner ear and by the lack of clinically-relevant in vitro, in vivo or in silico models. Here, we present 3D printing-neural network co-modelling for interpreting electric field imaging profiles of cochlear implant patients. With tuneable electro-anatomy, the 3D printed cochleae can replicate clinical scenarios of electric field imaging profiles at the off-stimuli positions. The co-modelling framework demonstrated autonomous and robust predictions of patient profiles or cochlear geometry, unfolded the electro-anatomical factors causing current spread, assisted on-demand printing for implant testing, and inferred patients' in vivo cochlear tissue resistivity (estimated mean = 6.6 kΩcm). We anticipate our framework will facilitate physical modelling and digital twin innovations for neuromodulation implants.
人工耳蜗通过在耳蜗内传递电刺激来恢复重度至极重度耳聋患者的听力。由于内耳的可及性差,以及缺乏与临床相关的体外、体内或计算模型,人们对刺激电流的传播及其与患者相关因素的相关性的理解受到阻碍。在这里,我们提出了 3D 打印-神经网络联合建模,用于解释人工耳蜗植入患者的电场成像曲线。通过可调谐的电解剖结构,3D 打印的耳蜗可以复制在刺激位置以外的电场成像曲线的临床场景。联合建模框架自主且稳健地预测了患者的个人资料或耳蜗几何形状,揭示了导致电流扩散的电解剖因素,辅助按需打印以进行植入物测试,并推断出患者的体内耳蜗组织电阻率(估计平均值为 6.6 kΩcm)。我们预计我们的框架将促进神经调节植入物的物理建模和数字孪生创新。