Suppr超能文献

实施数字通信辅助工具以收集难民患者的病史:DICTUM弗里德兰德——一项以行动为导向的混合方法研究方案。

Implementing a digital communication assistance tool to collect the medical history of refugee patients: DICTUM Friedland - an action-oriented mixed methods study protocol.

作者信息

Furaijat Ghefar, Kleinert Evelyn, Simmenroth Anne, Müller Frank

机构信息

Department of General Practice, University Medical Centre Göttingen/Georg-August-University, Humboldtallee 38, 37073, Göttingen, Germany.

Department of General Practice, University Medical Centre Würzburg/Julius-Maximilian-University, Josef-Schneider-Straße 2, 97080, Würzburg, Germany.

出版信息

BMC Health Serv Res. 2019 Feb 6;19(1):103. doi: 10.1186/s12913-019-3928-1.

Abstract

BACKGROUND

Language barriers play a decisive role in determining the outcomes of medical consultations between healthcare providers and their foreign patients. This issue is a significant challenge to the German healthcare system, especially with the rising number of refugees in recent years. The communication gap between healthcare professionals and their non-German speaking patients sometimes leads to unnecessary medical re-admission, insufficient medical history, incorrect diagnosis, and treatment plans. In this study, we aim to assess the usability and accuracy of a novel digital translation tool in collecting medical history from patients in their native language and to check its effects on healthcare outcomes.

METHODS

The study aims to monitor the implementation of a new digital communication assistance tool (DCAT) and to investigate its impact on the mutual understanding between refugee patients and their German general practitioners (GPs). In the first study phase, an action-oriented approach is used to implement DCAT. In the second study phase, DCAT use will be evaluated with a mixed methods design. The main outcome assesses the re-consultation rates of patients before and after using DCAT. Secondary outcomes include the usability of the tool, its acceptance and perceived quality by patients, the accuracy of the information collected as determined from analysing the reasons for the consultation (ICPC-2 codes), and diagnosis (ICD-10 codes). The acceptance by patients, socio-demographic factors and native language are also taken into account. The research designs for both study phases include questionnaires, semi-structured interviews, non-participant observation and analysis of collected patients' data. All the collected data is pseudonymised.

DISCUSSION

The DCAT study is one of the new research projects in primary healthcare investigating the usability, accuracy, and acceptance of digital translation tools during medical encounters. We aim to eliminate significant communication errors and misunderstandings in medical consultations, thereby improving the quality of healthcare outcomes. By applying an action research design, we will attain a more comprehensive evaluation of DCAT scopes and limits. The results of this study are expected to give an in-depth understanding of possible applications and benefits of digital translation tools for patient care.

TRIAL REGISTRATION

German Clinical Trials Register DRKS00013076 , 29/09/2017.

摘要

背景

语言障碍在决定医疗服务提供者与其外国患者之间的医疗咨询结果方面起着决定性作用。这个问题对德国医疗体系来说是一项重大挑战,尤其是近年来难民数量不断增加的情况下。医疗专业人员与其非德语患者之间的沟通差距有时会导致不必要的再次入院、病史信息不足、诊断错误以及治疗方案不当。在本研究中,我们旨在评估一种新型数字翻译工具在以患者母语收集病史方面的可用性和准确性,并检查其对医疗结果的影响。

方法

本研究旨在监测一种新型数字通信辅助工具(DCAT)的实施情况,并调查其对难民患者与其德国全科医生(GP)之间相互理解的影响。在第一个研究阶段,采用面向行动的方法来实施DCAT。在第二个研究阶段,将使用混合方法设计对DCAT的使用情况进行评估。主要结果评估使用DCAT前后患者的再次咨询率。次要结果包括该工具的可用性、患者对其的接受程度和感知质量、通过分析咨询原因(国际初级保健分类 - 2代码)确定所收集信息的准确性以及诊断(国际疾病分类 - 10代码)。还会考虑患者的接受程度、社会人口统计学因素和母语。两个研究阶段的研究设计包括问卷调查、半结构化访谈、非参与观察以及对收集到的患者数据进行分析。所有收集到的数据都进行了化名处理。

讨论

DCAT研究是初级医疗保健领域中研究医疗会诊期间数字翻译工具的可用性、准确性和接受程度的新研究项目之一。我们旨在消除医疗咨询中重大的沟通错误和误解,从而提高医疗结果的质量。通过应用行动研究设计,我们将对DCAT的范围和局限性进行更全面的评估。预计本研究结果将深入了解数字翻译工具在患者护理方面的可能应用和益处。

试验注册

德国临床试验注册中心DRKS00013076,2017年9月29日。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bd9/6366114/d747e08fce97/12913_2019_3928_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验