University of Toronto, Toronto, Canada.
Vector Institute for Artificial Intelligence, Toronto, Canada.
Sci Rep. 2019 Feb 7;9(1):1609. doi: 10.1038/s41598-019-38612-9.
We consider whether a deep neural network trained with raw MEG data can be used to predict the age of children performing a verb-generation task, a monosyllable speech-elicitation task, and a multi-syllabic speech-elicitation task. Furthermore, we argue that the network makes predictions on the grounds of differences in speech development. Previous work has explored taking 'deep' neural networks (DNNs) designed for, or trained with, images to classify encephalographic recordings with some success, but this does little to acknowledge the structure of these data. Simple neural networks have been used extensively to classify data expressed as features, but require extensive feature engineering and pre-processing. We present novel DNNs trained using raw magnetoencephalography (MEG) and electroencephalography (EEG) recordings that mimic the feature-engineering pipeline. We highlight criteria the networks use, including relative weighting of channels and preferred spectro-temporal characteristics of re-weighted channels. Our data feature 92 subjects aged 4-18, recorded using a 151-channel MEG system. Our proposed model scores over 95% mean cross-validation accuracy distinguishing above and below 10 years of age in single trials of un-seen subjects, and can classify publicly available EEG with state-of-the-art accuracy.
我们考虑使用基于原始 MEG 数据训练的深度神经网络是否可以用于预测执行动词生成任务、单音节语音诱发任务和多音节语音诱发任务的儿童的年龄。此外,我们认为该网络的预测依据是语音发展的差异。先前的工作已经探索了使用针对图像设计或经过图像训练的“深度”神经网络 (DNN) 对脑电图记录进行分类,取得了一定的成功,但这并没有充分考虑到这些数据的结构。简单的神经网络已被广泛用于对特征表示的数据进行分类,但需要进行大量的特征工程和预处理。我们提出了使用原始脑磁图 (MEG) 和脑电图 (EEG) 记录训练的新型 DNN,这些网络模仿了特征工程管道。我们强调了网络使用的标准,包括通道的相对权重和重新加权通道的首选频谱-时间特征。我们的数据包含 92 名年龄在 4-18 岁的受试者,使用 151 通道 MEG 系统记录。我们提出的模型在单试中对未见过的受试者的 10 岁以上和以下的分类准确率超过 95%,并且可以以最先进的准确率对公开可用的 EEG 进行分类。