Suppr超能文献

从计算机断层扫描图像中提取的肿瘤介观结构的数学描述符可标注上皮性卵巢癌的预后和分子表型。

A mathematical-descriptor of tumor-mesoscopic-structure from computed-tomography images annotates prognostic- and molecular-phenotypes of epithelial ovarian cancer.

机构信息

Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0HS, UK.

Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0HS, UK.

出版信息

Nat Commun. 2019 Feb 15;10(1):764. doi: 10.1038/s41467-019-08718-9.

Abstract

The five-year survival rate of epithelial ovarian cancer (EOC) is approximately 35-40% despite maximal treatment efforts, highlighting a need for stratification biomarkers for personalized treatment. Here we extract 657 quantitative mathematical descriptors from the preoperative CT images of 364 EOC patients at their initial presentation. Using machine learning, we derive a non-invasive summary-statistic of the primary ovarian tumor based on 4 descriptors, which we name "Radiomic Prognostic Vector" (RPV). RPV reliably identifies the 5% of patients with median overall survival less than 2 years, significantly improves established prognostic methods, and is validated in two independent, multi-center cohorts. Furthermore, genetic, transcriptomic and proteomic analysis from two independent datasets elucidate that stromal phenotype and DNA damage response pathways are activated in RPV-stratified tumors. RPV and its associated analysis platform could be exploited to guide personalized therapy of EOC and is potentially transferrable to other cancer types.

摘要

尽管已经进行了最大限度的治疗,上皮性卵巢癌 (EOC) 的五年生存率仍约为 35-40%,这凸显了对分层生物标志物以实现个体化治疗的需求。在此,我们从 364 名初诊 EOC 患者的术前 CT 图像中提取了 657 个定量数学描述符。我们使用机器学习从 4 个描述符中推导出基于原发性卵巢肿瘤的非侵入性综合统计量,我们将其命名为“放射组学预后向量”(Radiomic Prognostic Vector,RPV)。RPV 可靠地识别出中位总生存期小于 2 年的患者中的 5%,显著提高了现有的预后方法,并在两个独立的多中心队列中得到验证。此外,来自两个独立数据集的遗传、转录组和蛋白质组分析表明,RPV 分层肿瘤中存在基质表型和 DNA 损伤反应途径的激活。RPV 及其相关的分析平台可用于指导 EOC 的个体化治疗,并且具有潜在的可转移性,可应用于其他癌症类型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4780/6377605/fdce90b3f719/41467_2019_8718_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验