长枝木霉 H9 诱导黄瓜系统抗性的茉莉酸、乙烯和水杨酸信号通路参与。

Involvement of jasmonic acid, ethylene and salicylic acid signaling pathways behind the systemic resistance induced by Trichoderma longibrachiatum H9 in cucumber.

机构信息

College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, People's Republic of China.

Biology Institute, Hebei Academy of Sciences, Shijiazhuang, 050081, People's Republic of China.

出版信息

BMC Genomics. 2019 Feb 18;20(1):144. doi: 10.1186/s12864-019-5513-8.

Abstract

BACKGROUND

Trichoderma spp. are effective biocontrol agents for many plant pathogens, thus the mechanism of Trichoderma-induced plant resistance is not fully understood. In this study, a novel Trichoderma strain was identified, which could promote plant growth and reduce the disease index of gray mold caused by Botrytis cinerea in cucumber. To assess the impact of Trichoderma inoculation on the plant response, a multi-omics approach was performed in the Trichoderma-inoculated cucumber plants through the analyses of the plant transcriptome, proteome, and phytohormone content.

RESULTS

A novel Trichoderma strain was identified by morphological and molecular analysis, here named T. longibrachiatum H9. Inoculation of T. longibrachiatum H9 to cucumber roots promoted plant growth in terms of root length, plant height, and fresh weight. Root colonization of T. longibrachiatum H9 in the outer layer of epidermis significantly inhibited the foliar pathogen B. cinerea infection in cucumber. The plant transcriptome and proteome analyses indicated that a large number of differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) were identified in cucumber plants 96 h post T. longibrachiatum H9 inoculation. Up-regulated DEGs and DEPs were mainly associated with defense/stress processes, secondary metabolism, and phytohormone synthesis and signaling, including jasmonic acid (JA), ethylene (ET) and salicylic acid (SA), in the T. longibrachiatum H9-inoculated cucumber plants in comparison to untreated plants. Moreover, the JA and SA contents significantly increased in cucumber plants with T. longibrachiatum H9 inoculation.

CONCLUSIONS

Application of T. longibrachiatum H9 to the roots of cucumber plants effectively promoted plant growth and significantly reduced the disease index of gray mold caused by B. cinerea. The analyses of the plant transcriptome, proteome and phytohormone content demonstrated that T. longibrachiatum H9 mediated plant systemic resistance to B. cinerea challenge through the activation of signaling pathways associated with the phytohormones JA/ET and SA in cucumber.

摘要

背景

木霉属真菌是许多植物病原菌的有效生物防治剂,因此木霉诱导植物抗性的机制尚不完全清楚。在这项研究中,鉴定了一种新型木霉菌株,它可以促进黄瓜生长并降低由灰葡萄孢引起的灰霉病的病指。为了评估木霉接种对植物反应的影响,通过分析植物转录组、蛋白质组和植物激素含量,对木霉接种的黄瓜植物进行了多组学研究。

结果

通过形态学和分子分析鉴定了一种新型木霉菌株,命名为 T. longibrachiatum H9。将 T. longibrachiatum H9 接种到黄瓜根部可促进根长、株高和鲜重的生长。T. longibrachiatum H9 在表皮外层的定殖显著抑制了黄瓜叶片病原菌 B. cinerea 的感染。植物转录组和蛋白质组分析表明,在 T. longibrachiatum H9 接种后 96 小时,黄瓜植物中鉴定出大量差异表达基因(DEGs)和差异表达蛋白(DEPs)。上调的 DEGs 和 DEPs 主要与防御/应激过程、次生代谢和植物激素合成和信号转导有关,包括茉莉酸(JA)、乙烯(ET)和水杨酸(SA),与未处理植物相比,在 T. longibrachiatum H9 接种的黄瓜植物中。此外,在接种 T. longibrachiatum H9 的黄瓜植物中,JA 和 SA 的含量显著增加。

结论

将 T. longibrachiatum H9 应用于黄瓜植物的根部可有效促进植物生长,并显著降低由 B. cinerea 引起的灰霉病的病指。植物转录组、蛋白质组和植物激素含量的分析表明,T. longibrachiatum H9 通过激活与 JA/ET 和 SA 相关的信号通路,介导黄瓜对 B. cinerea 挑战的系统抗性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f43d/6379975/1773e7793566/12864_2019_5513_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索