Suppr超能文献

用于作物性状定向改良的植物基因组工程。

Plant Genome Engineering for Targeted Improvement of Crop Traits.

作者信息

Sedeek Khalid E M, Mahas Ahmed, Mahfouz Magdy

机构信息

Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.

出版信息

Front Plant Sci. 2019 Feb 12;10:114. doi: 10.3389/fpls.2019.00114. eCollection 2019.

Abstract

To improve food security, plant biology research aims to improve crop yield and tolerance to biotic and abiotic stress, as well as increasing the nutrient contents of food. Conventional breeding systems have allowed breeders to produce improved varieties of many crops; for example, hybrid grain crops show dramatic improvements in yield. However, many challenges remain and emerging technologies have the potential to address many of these challenges. For example, site-specific nucleases such as TALENs and CRISPR/Cas systems, which enable high-efficiency genome engineering across eukaryotic species, have revolutionized biological research and its applications in crop plants. These nucleases have been used in diverse plant species to generate a wide variety of site-specific genome modifications through strategies that include targeted mutagenesis and editing for various agricultural biotechnology applications. Moreover, CRISPR/Cas genome-wide screens make it possible to discover novel traits, expand the range of traits, and accelerate trait development in target crops that are key for food security. Here, we discuss the development and use of various site-specific nuclease systems for different plant genome-engineering applications. We highlight the existing opportunities to harness these technologies for targeted improvement of traits to enhance crop productivity and resilience to climate change. These cutting-edge genome-editing technologies are thus poised to reshape the future of agriculture and food security.

摘要

为提高粮食安全,植物生物学研究旨在提高作物产量、增强对生物和非生物胁迫的耐受性,并增加食物中的营养成分。传统育种系统使育种者能够培育出许多作物的改良品种;例如,杂交谷物作物的产量有显著提高。然而,许多挑战依然存在,新兴技术有潜力应对其中的许多挑战。例如,诸如转录激活样效应因子核酸酶(TALENs)和规律成簇间隔短回文重复序列/CRISPR相关蛋白系统(CRISPR/Cas系统)等位点特异性核酸酶,能够在真核生物物种中实现高效基因组工程,彻底改变了生物学研究及其在作物中的应用。这些核酸酶已用于多种植物物种,通过包括靶向诱变和编辑等策略,实现了各种各样的位点特异性基因组修饰,以用于各种农业生物技术应用。此外,CRISPR/Cas全基因组筛选使得发现新性状、扩大性状范围以及加速目标作物中对粮食安全至关重要的性状开发成为可能。在此,我们讨论了各种位点特异性核酸酶系统在不同植物基因组工程应用中的开发和使用。我们强调了利用这些技术有针对性地改良性状以提高作物生产力和增强对气候变化适应能力的现有机会。因此,这些前沿的基因组编辑技术有望重塑农业和粮食安全的未来。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0431/6379297/0ea46c1a2f5d/fpls-10-00114-g001.jpg

相似文献

1
Plant Genome Engineering for Targeted Improvement of Crop Traits.用于作物性状定向改良的植物基因组工程。
Front Plant Sci. 2019 Feb 12;10:114. doi: 10.3389/fpls.2019.00114. eCollection 2019.
4
Genome editing in fruit, ornamental, and industrial crops.水果、观赏和工业作物的基因组编辑。
Transgenic Res. 2021 Aug;30(4):499-528. doi: 10.1007/s11248-021-00240-3. Epub 2021 Apr 6.
5
Advances in Crop Breeding Through Precision Genome Editing.通过精准基因组编辑实现作物育种的进展
Front Genet. 2022 Jul 14;13:880195. doi: 10.3389/fgene.2022.880195. eCollection 2022.

引用本文的文献

10
Opportunity for genome engineering to enhance phosphate homeostasis in crops.利用基因组工程改善作物磷素稳态的机遇。
Physiol Mol Biol Plants. 2024 Jul;30(7):1055-1070. doi: 10.1007/s12298-024-01479-w. Epub 2024 Jul 18.

本文引用的文献

7
Nanoparticle-Mediated Delivery towards Advancing Plant Genetic Engineering.纳米颗粒介导的递呈在推进植物基因工程中的应用。
Trends Biotechnol. 2018 Sep;36(9):882-897. doi: 10.1016/j.tibtech.2018.03.009. Epub 2018 Apr 24.
9
CRISPR/Cas13 as a Tool for RNA Interference.CRISPR/Cas13 作为 RNA 干扰的工具。
Trends Plant Sci. 2018 May;23(5):374-378. doi: 10.1016/j.tplants.2018.03.003. Epub 2018 Mar 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验