Laboratory of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China,
Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.
Int J Nanomedicine. 2019 Feb 25;14:1519-1532. doi: 10.2147/IJN.S184192. eCollection 2019.
In this work, we have developed a novel "confined-growth" strategy to synthesize PEGylated multiple gold nanorices-encapsulated dual-mesoporous silica nanospheres (designated as PEGylated MGNRs@DMSSs) containing both small mesopores (2.5 nm) in the shell and large mesopores (21.7 nm) in the core based on a well-established, seed-mediated growth method. The photothermal effect and CT imaging ability were also studied.
The nanoparticles were characterized by Fourier transform infrared (FT-IR) spectra, N absorption isotherms, Field-emission scanning electron microscopy (FE-SEM), Transmission electron microscopy (TEM), Inductively coupled plasma atomic emission spectroscopy (ICP-AES) and Confocal microscopy.
The longitudinally-localized surface (LSPR) absorption properties of MGNRs@DMSSs can be easily tuned by altering the amount of HAuCl in the gold growth solution. Additionally, the resultant PEGylated MGNRs@DMSSs have monodispersed, spherical morphology and good colloidal stability in an aqueous solution. More importantly, when exposed to NIR irradiation, the PEGylated MGNRs@DMSSs exhibit both higher temperature increments and better photothermal effects than that of single PEGylated gold nanorods at nearly an equivalent LSPR absorption. In addition, as CT contrast agents, the PEGylated MGNRs@DMSSs display a better CT imaging performance, in comparison with single PEGylated gold nanorods at the same Au concentration.
Taken together, results indicate the potential for MGNRs@DMSSs used in CT imaging-guided photothermal therapy. Such a simple "confined-growth" strategy within a porous matrix offers a promising platform to design and prepare novel metal(s) oxide@silica nanocomposites for use in further cancer bio-imaging and therapy.
在这项工作中,我们开发了一种新的“受限生长”策略,以合成基于成熟种子介导生长方法的聚乙二醇化多金纳米棒封装双介孔硅纳米球(命名为聚乙二醇化 MGNRs@DMSSs),其中包含壳层中的小介孔(2.5nm)和核中的大介孔(21.7nm)。还研究了光热效应和 CT 成像能力。
通过傅里叶变换红外(FT-IR)光谱、N 吸收等温线、场发射扫描电子显微镜(FE-SEM)、透射电子显微镜(TEM)、电感耦合等离子体原子发射光谱(ICP-AES)和共聚焦显微镜对纳米粒子进行了表征。
MGNRs@DMSSs 的纵向局域表面等离子体(LSPR)吸收特性可以通过改变金生长溶液中 HAuCl 的量来轻松调节。此外,所得的聚乙二醇化 MGNRs@DMSSs 具有单分散、球形形态和在水溶液中的良好胶体稳定性。更重要的是,当暴露于近红外辐射时,PEGylated MGNRs@DMSSs 表现出比单 PEGylated 金纳米棒更高的温升和更好的光热效应,其 LSPR 吸收几乎相等。此外,作为 CT 造影剂,PEGylated MGNRs@DMSSs 与相同 Au 浓度的单 PEGylated 金纳米棒相比,具有更好的 CT 成像性能。
综上所述,结果表明 MGNRs@DMSSs 可用于 CT 成像引导的光热治疗。在多孔基质内的这种简单“受限生长”策略为设计和制备新型金属(s)氧化物@硅纳米复合材料提供了有前途的平台,可用于进一步的癌症生物成像和治疗。