文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

过渡模块:一种防止卷积神经网络过拟合的方法。

The transition module: a method for preventing overfitting in convolutional neural networks.

作者信息

Akbar S, Peikari M, Salama S, Nofech-Mozes S, Martel A L

机构信息

Sunnybrook Research Institute, University of Toronto, Toronto, Canada.

Sunnybrook Health Sciences Centre, Toronto, Canada.

出版信息

Comput Methods Biomech Biomed Eng Imaging Vis. 2019;7(3):260-265. doi: 10.1080/21681163.2018.1427148. Epub 2018 Jan 26.


DOI:10.1080/21681163.2018.1427148
PMID:31192055
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6561649/
Abstract

Digital pathology has advanced substantially over the last decade with the adoption of slide scanners in pathology labs. The use of digital slides to analyse diseases at the microscopic level is both cost-effective and efficient. Identifying complex tumour patterns in digital slides is a challenging problem but holds significant importance for tumour burden assessment, grading and many other pathological assessments in cancer research. The use of convolutional neural networks (CNNs) to analyse such complex images has been well adopted in digital pathology. However, in recent years, the architecture of CNNs has altered with the introduction of inception modules which have shown great promise for classification tasks. In this paper, we propose a modified 'transition' module which encourages generalisation in a deep learning framework with few training samples. In the transition module, filters of varying sizes are used to encourage class-specific filters at multiple spatial resolutions followed by global average pooling. We demonstrate the performance of the transition module in AlexNet and ZFNet, for classifying breast tumours in two independent data-sets of scanned histology sections; the inclusion of the transition module in these CNNs improved performance.

摘要

在过去十年中,随着病理实验室采用玻片扫描仪,数字病理学取得了长足的进步。使用数字玻片在微观层面分析疾病既经济又高效。在数字玻片中识别复杂的肿瘤模式是一个具有挑战性的问题,但对于肿瘤负荷评估、分级以及癌症研究中的许多其他病理评估具有重要意义。在数字病理学中,卷积神经网络(CNN)已被广泛用于分析此类复杂图像。然而,近年来,随着引入对分类任务显示出巨大潜力的Inception模块,CNN的架构发生了变化。在本文中,我们提出了一种改进的“过渡”模块,该模块在训练样本较少的深度学习框架中促进泛化。在过渡模块中,使用不同大小的滤波器在多个空间分辨率上促进特定类别的滤波器,随后进行全局平均池化。我们在AlexNet和ZFNet中展示了过渡模块在两个独立的扫描组织学切片数据集中对乳腺肿瘤进行分类的性能;在这些CNN中包含过渡模块提高了性能。

相似文献

[1]
The transition module: a method for preventing overfitting in convolutional neural networks.

Comput Methods Biomech Biomed Eng Imaging Vis. 2019

[2]
Training Lightweight Deep Convolutional Neural Networks Using Bag-of-Features Pooling.

IEEE Trans Neural Netw Learn Syst. 2019-6

[3]
Automated Grading of Gliomas using Deep Learning in Digital Pathology Images: A modular approach with ensemble of convolutional neural networks.

AMIA Annu Symp Proc. 2015-11-5

[4]
Deep convolutional neural networks for automatic classification of gastric carcinoma using whole slide images in digital histopathology.

Comput Med Imaging Graph. 2017-6-16

[5]
Dense Steerable Filter CNNs for Exploiting Rotational Symmetry in Histology Images.

IEEE Trans Med Imaging. 2020-12

[6]
Skin lesion classification with ensembles of deep convolutional neural networks.

J Biomed Inform. 2018-8-10

[7]
Deep Convolutional Neural Networks for large-scale speech tasks.

Neural Netw. 2014-9-16

[8]
Deep Convolutional Neural Networks for breast cancer screening.

Comput Methods Programs Biomed. 2018-1-11

[9]
Automated Melanoma Recognition in Dermoscopy Images via Very Deep Residual Networks.

IEEE Trans Med Imaging. 2016-12-21

[10]
Study of the Application of Deep Convolutional Neural Networks (CNNs) in Processing Sensor Data and Biomedical Images.

Sensors (Basel). 2019-8-17

引用本文的文献

[1]
Predicting the Evolution of Lung Squamous Cell Carcinoma In Situ Using Computational Pathology.

Bioengineering (Basel). 2025-4-2

[2]
Machine Learning Allows for Distinguishing Precancerous and Cancerous Human Epithelial Cervical Cells Using High-Resolution AFM Imaging of Adhesion Maps.

Cells. 2023-10-28

[3]
Radiomics Applications in Head and Neck Tumor Imaging: A Narrative Review.

Cancers (Basel). 2023-2-12

[4]
DeepSnap-Deep Learning Approach Predicts Progesterone Receptor Antagonist Activity With High Performance.

Front Bioeng Biotechnol. 2020-1-22

[5]
Breast cancer histopathological image classification using convolutional neural networks with small SE-ResNet module.

PLoS One. 2019-3-29

本文引用的文献

[1]
An Image Analysis Resource for Cancer Research: PIIP-Pathology Image Informatics Platform for Visualization, Analysis, and Management.

Cancer Res. 2017-11-1

[2]
Assessing Tumor-infiltrating Lymphocytes in Solid Tumors: A Practical Review for Pathologists and Proposal for a Standardized Method From the International Immunooncology Biomarkers Working Group: Part 1: Assessing the Host Immune Response, TILs in Invasive Breast Carcinoma and Ductal Carcinoma In Situ, Metastatic Tumor Deposits and Areas for Further Research.

Adv Anat Pathol. 2017-9

[3]
Breast Cancer Multi-classification from Histopathological Images with Structured Deep Learning Model.

Sci Rep. 2017-6-23

[4]
Classification of breast cancer histology images using Convolutional Neural Networks.

PLoS One. 2017-6-1

[5]
Large scale tissue histopathology image classification, segmentation, and visualization via deep convolutional activation features.

BMC Bioinformatics. 2017-5-26

[6]
A Dataset for Breast Cancer Histopathological Image Classification.

IEEE Trans Biomed Eng. 2016-7

[7]
Histologic grade remains a prognostic factor for breast cancer regardless of the number of positive lymph nodes and tumor size: a study of 161 708 cases of breast cancer from the SEER Program.

Arch Pathol Lab Med. 2014-8

[8]
Cancer Digital Slide Archive: an informatics resource to support integrated in silico analysis of TCGA pathology data.

J Am Med Inform Assoc. 2013-7-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索