Akbar S, Peikari M, Salama S, Nofech-Mozes S, Martel A L
Sunnybrook Research Institute, University of Toronto, Toronto, Canada.
Sunnybrook Health Sciences Centre, Toronto, Canada.
Comput Methods Biomech Biomed Eng Imaging Vis. 2019;7(3):260-265. doi: 10.1080/21681163.2018.1427148. Epub 2018 Jan 26.
Digital pathology has advanced substantially over the last decade with the adoption of slide scanners in pathology labs. The use of digital slides to analyse diseases at the microscopic level is both cost-effective and efficient. Identifying complex tumour patterns in digital slides is a challenging problem but holds significant importance for tumour burden assessment, grading and many other pathological assessments in cancer research. The use of convolutional neural networks (CNNs) to analyse such complex images has been well adopted in digital pathology. However, in recent years, the architecture of CNNs has altered with the introduction of inception modules which have shown great promise for classification tasks. In this paper, we propose a modified 'transition' module which encourages generalisation in a deep learning framework with few training samples. In the transition module, filters of varying sizes are used to encourage class-specific filters at multiple spatial resolutions followed by global average pooling. We demonstrate the performance of the transition module in AlexNet and ZFNet, for classifying breast tumours in two independent data-sets of scanned histology sections; the inclusion of the transition module in these CNNs improved performance.
在过去十年中,随着病理实验室采用玻片扫描仪,数字病理学取得了长足的进步。使用数字玻片在微观层面分析疾病既经济又高效。在数字玻片中识别复杂的肿瘤模式是一个具有挑战性的问题,但对于肿瘤负荷评估、分级以及癌症研究中的许多其他病理评估具有重要意义。在数字病理学中,卷积神经网络(CNN)已被广泛用于分析此类复杂图像。然而,近年来,随着引入对分类任务显示出巨大潜力的Inception模块,CNN的架构发生了变化。在本文中,我们提出了一种改进的“过渡”模块,该模块在训练样本较少的深度学习框架中促进泛化。在过渡模块中,使用不同大小的滤波器在多个空间分辨率上促进特定类别的滤波器,随后进行全局平均池化。我们在AlexNet和ZFNet中展示了过渡模块在两个独立的扫描组织学切片数据集中对乳腺肿瘤进行分类的性能;在这些CNN中包含过渡模块提高了性能。
Comput Methods Biomech Biomed Eng Imaging Vis. 2019
IEEE Trans Neural Netw Learn Syst. 2019-6
Comput Med Imaging Graph. 2017-6-16
IEEE Trans Med Imaging. 2020-12
J Biomed Inform. 2018-8-10
Neural Netw. 2014-9-16
Comput Methods Programs Biomed. 2018-1-11
IEEE Trans Med Imaging. 2016-12-21
Bioengineering (Basel). 2025-4-2
Cancers (Basel). 2023-2-12
Front Bioeng Biotechnol. 2020-1-22
IEEE Trans Biomed Eng. 2016-7
J Am Med Inform Assoc. 2013-7-25