Suppr超能文献

一个有原则的机器学习框架提高了II期结直肠癌预后的准确性。

A principled machine learning framework improves accuracy of stage II colorectal cancer prognosis.

作者信息

Dimitriou Neofytos, Arandjelović Ognjen, Harrison David J, Caie Peter D

机构信息

1School of Computer Science, University of St Andrews, St Andrews, KY16 9SX UK.

2School of Medicine, University of St Andrews, St Andrews, KY16 9TF UK.

出版信息

NPJ Digit Med. 2018 Oct 2;1:52. doi: 10.1038/s41746-018-0057-x. eCollection 2018.

Abstract

Accurate prognosis is fundamental in planning an appropriate therapy for cancer patients. Consequent to the heterogeneity of the disease, intra- and inter-pathologist variability, and the inherent limitations of current pathological reporting systems, patient outcome varies considerably within similarly staged patient cohorts. This is particularly true when classifying stage II colorectal cancer patients using the current TNM guidelines. The aim of the present work is to address this problem through the use of machine learning. In particular, we introduce a data driven framework which makes use of a large number of diverse types of features, readily collected from immunofluorescence imagery. Its outstanding performance in predicting mortality in stage II patients (AUROC = 0:94), exceeds that of current clinical guidelines such as pT stage (AUROC = 0:65), and is demonstrated on a cohort of 173 colorectal cancer patients.

摘要

准确的预后对于为癌症患者制定合适的治疗方案至关重要。由于疾病的异质性、病理学家内部和之间的变异性以及当前病理报告系统的固有局限性,在分期相似的患者队列中,患者的预后差异很大。在使用当前的TNM指南对II期结直肠癌患者进行分类时尤其如此。本研究的目的是通过使用机器学习来解决这个问题。特别是,我们引入了一个数据驱动的框架,该框架利用了大量从免疫荧光图像中容易收集到的不同类型的特征。其在预测II期患者死亡率方面的出色表现(AUROC = 0.94)超过了当前的临床指南,如pT分期(AUROC = 0.65),并在一组173例结直肠癌患者中得到了验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/857c/6550189/d5a5db63d7dc/41746_2018_57_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验