Suppr超能文献

4-氨基安替比林席夫碱衍生物的抗菌、抗氧化和杀利什曼原虫活性的表征。

Characterization of Antimicrobial, Antioxidant, and Leishmanicidal Activities of Schiff Base Derivatives of 4-Aminoantipyrine.

机构信息

Facultad de Ciencias Químicas, Universidad Central del Ecuador, Quito 170521, Ecuador.

Instituto de Investigación en Salud Pública y Zoonosis-CIZ, Universidad Central del Ecuador, Quito 170521, Ecuador.

出版信息

Molecules. 2019 Jul 24;24(15):2696. doi: 10.3390/molecules24152696.

Abstract

Our main interest is the characterization of compounds to support the development of alternatives to currently marketed drugs that are losing effectiveness due to the development of resistance. Schiff bases are promising biologically interesting compounds having a wide range of pharmaceutical properties, including anti-inflammatory, antipyretic, and antimicrobial activities, among others. In this work, we have synthesized 12 Schiff base derivatives of 4-aminoantipyrine. In vitro antimicrobial, antioxidant, and cytotoxicity properties are analyzed, as well as in silico predictive adsorption, distribution, metabolism, and excretion (ADME) and bioactivity scores. Results identify two potential Schiff bases: one effective against and the other with antioxidant activity. Both have reasonable ADME scores and provides a scaffold for developing more effective compounds in the future. Initial studies are usually limited to laboratory in vitro approaches, and following these initial studies, much research is needed before a drug can reach the clinic. Nevertheless, these laboratory approaches are mandatory and constitute a first filter to discriminate among potential drug candidates and chemical compounds that should be discarded.

摘要

我们的主要兴趣是对化合物进行表征,以支持开发替代目前因耐药性而失去疗效的市售药物的替代品。席夫碱是一类具有广泛的药物特性的很有前途的生物活性化合物,包括抗炎、解热和抗菌活性等。在这项工作中,我们合成了 12 种 4-氨基安替比林的席夫碱衍生物。分析了它们的体外抗菌、抗氧化和细胞毒性特性,以及基于计算的预测吸附、分布、代谢和排泄(ADME)和生物活性评分。结果确定了两种有潜力的席夫碱:一种对 有效,另一种具有抗氧化活性。两者都具有合理的 ADME 评分,并为未来开发更有效的化合物提供了一个支架。初步研究通常仅限于实验室的体外方法,在这些初步研究之后,在药物能够进入临床之前,还需要进行大量的研究。然而,这些实验室方法是强制性的,是区分潜在药物候选物和应淘汰的化学化合物的第一道筛选。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5ec/6696115/d52487a2a7f8/molecules-24-02696-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验