State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
Beijing Tulip Partners Technology Co., Ltd, Beijing, China.
Br J Ophthalmol. 2019 Nov;103(11):1553-1560. doi: 10.1136/bjophthalmol-2019-314729. Epub 2019 Sep 2.
To establish and validate a universal artificial intelligence (AI) platform for collaborative management of cataracts involving multilevel clinical scenarios and explored an AI-based medical referral pattern to improve collaborative efficiency and resource coverage.
The training and validation datasets were derived from the Chinese Medical Alliance for Artificial Intelligence, covering multilevel healthcare facilities and capture modes. The datasets were labelled using a three-step strategy: (1) capture mode recognition; (2) cataract diagnosis as a normal lens, cataract or a postoperative eye and (3) detection of referable cataracts with respect to aetiology and severity. Moreover, we integrated the cataract AI agent with a real-world multilevel referral pattern involving self-monitoring at home, primary healthcare and specialised hospital services.
The universal AI platform and multilevel collaborative pattern showed robust diagnostic performance in three-step tasks: (1) capture mode recognition (area under the curve (AUC) 99.28%-99.71%), (2) cataract diagnosis (normal lens, cataract or postoperative eye with AUCs of 99.82%, 99.96% and 99.93% for mydriatic-slit lamp mode and AUCs >99% for other capture modes) and (3) detection of referable cataracts (AUCs >91% in all tests). In the real-world tertiary referral pattern, the agent suggested 30.3% of people be 'referred', substantially increasing the ophthalmologist-to-population service ratio by 10.2-fold compared with the traditional pattern.
The universal AI platform and multilevel collaborative pattern showed robust diagnostic performance and effective service for cataracts. The context of our AI-based medical referral pattern will be extended to other common disease conditions and resource-intensive situations.
建立并验证一个通用的人工智能(AI)平台,用于管理涉及多层次临床场景的白内障,并探索基于 AI 的医疗转诊模式,以提高协作效率和资源覆盖范围。
该研究的训练和验证数据集来源于中国人工智能医疗联盟,涵盖了多层次的医疗保健机构和采集模式。数据集使用三步策略进行标注:(1)采集模式识别;(2)白内障诊断为正常晶状体、白内障或术后眼;(3)根据病因和严重程度检测可转诊白内障。此外,我们将白内障 AI 代理与现实世界中的多层次转诊模式相结合,包括在家自我监测、初级保健和专科医院服务。
通用 AI 平台和多层次协作模式在三步任务中表现出稳健的诊断性能:(1)采集模式识别(曲线下面积(AUC)为 99.28%-99.71%);(2)白内障诊断(正常晶状体、白内障或术后眼的 AUC 分别为散瞳裂隙灯模式的 99.82%、99.96%和 99.93%,其他采集模式的 AUC 均>99%);(3)可转诊白内障的检测(所有测试的 AUC 均>91%)。在现实世界中的三级转诊模式中,代理建议 30.3%的人“转诊”,与传统模式相比,眼科医生与人群的服务比例提高了 10.2 倍。
通用 AI 平台和多层次协作模式在白内障的诊断和服务方面表现出稳健的性能和有效性。我们基于 AI 的医疗转诊模式的背景将扩展到其他常见疾病和资源密集型情况。