IEEE Trans Biomed Eng. 2020 May;67(5):1505-1516. doi: 10.1109/TBME.2019.2939138. Epub 2019 Sep 3.
This work presents a novel approach to handle the inter-subject variations existing in the population analysis of ECG, applied for localizing the origin of ventricular tachycardia (VT) from 12-lead electrocardiograms (ECGs).
The presented method involves a factor disentangling sequential autoencoder (f-SAE) - realized in both long short-term memory (LSTM) and gated recurrent unit (GRU) networks - to learn to disentangle the inter-subject variations from the factor relating to the location of origin of VT. To perform such disentanglement, a pair-wise contrastive loss is introduced.
The presented methods are evaluated on ECG dataset with 1012 distinct pacing sites collected from scar-related VT patients during routine pace-mapping procedures. Experiments demonstrate that, for classifying the origin of VT into the predefined segments, the presented f-SAE improves the classification accuracy by 8.94% from using prescribed QRS features, by 1.5% from the supervised deep CNN network, and 5.15% from the standard SAE without factor disentanglement. Similarly, when predicting the coordinates of the VT origin, the presented f-SAE improves the performance by 2.25 mm from using prescribed QRS features, by 1.18 mm from the supervised deep CNN network and 1.6 mm from the standard SAE.
These results demonstrate the importance as well as the feasibility of the presented f-SAE approach for separating inter-subject variations when using 12-lead ECG to localize the origin of VT.
This work suggests the important research direction to deal with the well-known challenge posed by inter-subject variations during population analysis from ECG signals.
本研究提出了一种新方法,用于处理心电图人群分析中存在的个体间差异,旨在从 12 导联心电图(ECG)定位室性心动过速(VT)的起源。
本方法涉及因子解缠序贯自动编码器(f-SAE)-分别在长短期记忆(LSTM)和门控循环单元(GRU)网络中实现-以学习从与 VT 起源位置相关的因子中解缠个体间差异。为了进行这种解缠,引入了成对对比损失。
本方法在从与瘢痕相关的 VT 患者在常规起搏映射过程中收集的 1012 个不同起搏部位的 ECG 数据集上进行了评估。实验表明,对于将 VT 的起源分类为预定义的节段,所提出的 f-SAE 通过使用规定的 QRS 特征将分类准确率提高了 8.94%,通过使用监督深度学习 CNN 网络提高了 1.5%,通过使用无因子解缠的标准 SAE 提高了 5.15%。同样,在预测 VT 起源的坐标时,所提出的 f-SAE 通过使用规定的 QRS 特征将性能提高了 2.25mm,通过使用监督深度学习 CNN 网络提高了 1.18mm,通过使用标准 SAE 提高了 1.6mm。
这些结果表明,在使用 12 导联 ECG 定位 VT 起源时,所提出的 f-SAE 方法在分离个体间差异方面具有重要意义和可行性。
本工作提出了一个重要的研究方向,以解决从 ECG 信号进行人群分析中存在的个体间差异这一众所周知的挑战。