Suppr超能文献

对精神分裂症自动预测计算方法的全面综述:深入了解原住民群体

A Comprehensive Review of Computational Methods for Automatic Prediction of Schizophrenia With Insight Into Indigenous Populations.

作者信息

Ratana Randall, Sharifzadeh Hamid, Krishnan Jamuna, Pang Shaoning

机构信息

School of Computing, Unitec Institute of Technology, Auckland, New Zealand.

Bay of Plenty District Health Board, Whakatane, New Zealand.

出版信息

Front Psychiatry. 2019 Sep 12;10:659. doi: 10.3389/fpsyt.2019.00659. eCollection 2019.

Abstract

Psychiatrists rely on language and speech behavior as one of the main clues in psychiatric diagnosis. Descriptive psychopathology and phenomenology form the basis of a common language used by psychiatrists to describe abnormal mental states. This conventional technique of clinical observation informed early studies on disturbances of thought form, speech, and language observed in psychosis and schizophrenia. These findings resulted in language models that were used as tools in psychosis research that concerned itself with the links between formal thought disorder and language disturbances observed in schizophrenia. The end result was the development of clinical rating scales measuring severity of disturbances in speech, language, and thought form. However, these linguistic measures do not fully capture the richness of human discourse and are time-consuming and subjective when measured against psychometric rating scales. These linguistic measures have not considered the influence of culture on psychopathology. With recent advances in computational sciences, we have seen a re-emergence of novel research using computing methods to analyze free speech for improving prediction and diagnosis of psychosis. Current studies on automated speech analysis examining for semantic incoherence are carried out based on natural language processing and acoustic analysis, which, in some studies, have been combined with machine learning approaches for classification and prediction purposes.

摘要

精神科医生将语言和言语行为作为精神科诊断的主要线索之一。描述性精神病理学和现象学构成了精神科医生用于描述异常精神状态的通用语言的基础。这种传统的临床观察技术为早期关于在精神病和精神分裂症中观察到的思维形式、言语和语言障碍的研究提供了依据。这些发现产生了语言模型,这些模型被用作精神病研究的工具,该研究关注精神分裂症中观察到的形式思维障碍与语言障碍之间的联系。最终结果是开发了测量言语、语言和思维形式障碍严重程度的临床评定量表。然而,这些语言测量方法并没有完全捕捉到人类话语的丰富性,并且与心理测量评定量表相比,既耗时又主观。这些语言测量方法没有考虑文化对精神病理学的影响。随着计算科学的最新进展,我们看到出现了一些新颖的研究,这些研究使用计算方法来分析自由言语,以改善对精神病的预测和诊断。目前关于自动言语分析以检查语义连贯性的研究是基于自然语言处理和声学分析进行的,在一些研究中,这些分析还与机器学习方法相结合,用于分类和预测目的。

相似文献

3
Modeling Incoherent Discourse in Non-Affective Psychosis.非情感性精神病中不连贯话语的建模
Front Psychiatry. 2020 Aug 19;11:846. doi: 10.3389/fpsyt.2020.00846. eCollection 2020.

引用本文的文献

10
Natural Language Processing: from Bedside to Everywhere.自然语言处理:从床边到无处不在。
Yearb Med Inform. 2022 Aug;31(1):243-253. doi: 10.1055/s-0042-1742510. Epub 2022 Jun 2.

本文引用的文献

5
Speech structure links the neural and socio-behavioural correlates of psychotic disorders.言语结构将精神障碍的神经和社会行为相关联。
Prog Neuropsychopharmacol Biol Psychiatry. 2019 Jan 10;88:112-120. doi: 10.1016/j.pnpbp.2018.07.007. Epub 2018 Jul 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验