Suppr超能文献

基于机器学习的物质使用及其结果分析:二、物质使用严重程度轨迹的推导与预测。

Analysis of substance use and its outcomes by machine learning: II. Derivation and prediction of the trajectory of substance use severity.

机构信息

Department of Pharmaceutical Sciences, Computational Chemical Genomics Screen Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA; NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA, USA.

Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA.

出版信息

Drug Alcohol Depend. 2020 Jan 1;206:107604. doi: 10.1016/j.drugalcdep.2019.107604. Epub 2019 Oct 1.

Abstract

BACKGROUND

This longitudinal study explored the utility of machine learning (ML) methodology in predicting the trajectory of severity of substance use from childhood to thirty years of age using a set of psychological and health characteristics.

DESIGN

Boys (N = 494) and girls (N = 206) were recruited using a high-risk paradigm at 10-12 years of age and followed up at 12-14, 16, 19, 22, 25 and 30 years of age.

MEASUREMENTS

At each visit, the subjects were administered a comprehensive battery to measure psychological makeup, health status, substance use and psychiatric disorder, and their overall harmfulness of substance consumption was quantified according to the multidimensional criteria (physical, dependence, and social) developed by Nutt et al. (2007). Next, high- and low- substance use severity trajectories were derived differentially associated with probability of segueing to substance use disorder (SUD). ML methodology was employed to predict trajectory membership.

FINDINGS

The high-severity trajectory group had a higher probability of leading to SUD than the low-severity trajectory (89.0% vs 32.4%; odds ratio = 16.88, p < 0.0001). Thirty psychological and health status items at each of the six visits predict membership in the high- or low-severity trajectory, with 71% accuracy at 10-12 years of age, increasing to 93% at 22 years of age.

CONCLUSION

These findings demonstrate the applicability of the machine learning methodology for detecting membership in a substance use trajectory with high probability of culminating in SUD, potentially informing primary and secondary prevention.

摘要

背景

本纵向研究使用一套心理和健康特征,探索了机器学习 (ML) 方法在预测从儿童期到三十岁物质使用严重程度轨迹方面的效用。

设计

使用高风险范式在 10-12 岁时招募男孩 (N=494) 和女孩 (N=206),并在 12-14、16、19、22、25 和 30 岁时进行随访。

测量

在每次访问时,受试者接受综合测试,以测量心理构成、健康状况、物质使用和精神障碍,根据纳特等人(2007 年)制定的多维标准(身体、依赖和社会)量化其物质消耗的整体危害性。接下来,根据与物质使用障碍(SUD)发生概率相关的差异,得出高和低物质使用严重程度轨迹。采用 ML 方法来预测轨迹成员身份。

发现

高严重程度轨迹组比低严重程度轨迹组更有可能导致 SUD(89.0% vs 32.4%;优势比=16.88,p<0.0001)。六个访问中的每一个都有 30 个心理和健康状况项目预测高或低严重程度轨迹的成员身份,在 10-12 岁时的准确率为 71%,在 22 岁时提高到 93%。

结论

这些发现表明机器学习方法适用于检测具有高 SUD 概率的物质使用轨迹的成员身份,可能为一级和二级预防提供信息。

相似文献

引用本文的文献

1
The Role of Despair in Predicting Self-Destructive Behaviors.绝望在预测自我毁灭行为中的作用。
Popul Res Policy Rev. 2025;44(3):33. doi: 10.1007/s11113-025-09952-4. Epub 2025 May 13.

本文引用的文献

5
DSM-5 Criteria for Youth Substance Use Disorders: Lost in Translation?
J Am Acad Child Adolesc Psychiatry. 2015 May;54(5):350-1. doi: 10.1016/j.jaac.2015.01.016.
8
Maturation of the adolescent brain.青少年大脑的成熟。
Neuropsychiatr Dis Treat. 2013;9:449-61. doi: 10.2147/NDT.S39776. Epub 2013 Apr 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验