文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用柠檬酸包被的超顺磁性氧化铁纳米颗粒对 T 淋巴细胞进行功能化,用于磁性控制免疫治疗。

Functionalization Of T Lymphocytes With Citrate-Coated Superparamagnetic Iron Oxide Nanoparticles For Magnetically Controlled Immune Therapy.

机构信息

Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Erlangen, Germany.

Department of Chemistry and Pharmacy, Division of Pharmaceutics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.

出版信息

Int J Nanomedicine. 2019 Oct 24;14:8421-8432. doi: 10.2147/IJN.S218488. eCollection 2019.


DOI:10.2147/IJN.S218488
PMID:31749616
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6817714/
Abstract

PURPOSE: Immune activation with T cell tumor infiltration is beneficial for the prognosis of patients suffering from solid cancer. Depending on their immune status, solid tumors can be immunologically classified into three groups: "hot" tumors are infiltrated with T lymphocytes, "cold" tumors are not infiltrated and "immune excluded" tumors are only infiltrated in the peripheral tumor tissue. Checkpoint inhibitors provide new therapeutic options for "hot" tumors by triggering the immune response of T cells. In order to enable this for cold tumors as well, T cells must be enriched in the tumor. Therefore, we use the principle of magnetic targeting to guide T cells loaded with citrate-coated superparamagnetic iron oxide nanoparticles (SPION) to the tumor by an externally applied magnetic field. METHODS: SPION were produced by alkaline coprecipitation of iron(II) and iron(III) chloride and in situ coating with sodium citrate. The concentration-dependent cytocompatibility of the particles was determined by flow cytometry and blood stability assays. Atomic emission spectroscopy was used for the quantification of the particle uptake into T lymphocytes. The attractability of the loaded cells was observed by live-cell imaging in the presence of an externally applied magnetic field. RESULTS: SPION displayed good cytocompatibility to T cells and did not show any sign of aggregation in blood. Finally, SPION-loaded T cells were strongly attracted by a small external magnet. CONCLUSION: T cells can be "magnetized" by incorporation of SPION for magnetic targeting. The production of the particle-cell hybrid system is straightforward, as the loading process only requires basic laboratory devices and the loading efficiency is sufficient for cells being magnetically controllable. For these reasons, SPION are potential suitable candidates for magnetic T cell targeting.

摘要

目的:T 细胞肿瘤浸润引起的免疫激活对患有实体瘤的患者的预后有益。根据其免疫状态,实体瘤可分为三类:“热”肿瘤浸润 T 淋巴细胞,“冷”肿瘤未浸润,“免疫排除”肿瘤仅浸润肿瘤外周组织。通过触发 T 细胞免疫反应,检查点抑制剂为“热”肿瘤提供了新的治疗选择。为了使“冷”肿瘤也能做到这一点,必须在肿瘤中富集 T 细胞。因此,我们利用磁靶向原理,通过外部施加的磁场将负载柠檬酸的超顺磁性氧化铁纳米粒子(SPION)的 T 细胞引导至肿瘤。

方法:通过铁(II)和铁(III)氯化物的碱性共沉淀和原位用柠檬酸钠进行包覆,制备 SPION。通过流式细胞术和血液稳定性测定来确定颗粒的浓度依赖性细胞相容性。原子发射光谱法用于定量测定颗粒摄取到 T 淋巴细胞中。通过在存在外部磁场的情况下进行活细胞成像来观察负载细胞的吸引力。

结果:SPION 对 T 细胞具有良好的细胞相容性,在血液中没有任何聚集的迹象。最后,负载 SPION 的 T 细胞被一个小的外部磁铁强烈吸引。

结论:通过掺入 SPION 可以对 T 细胞进行“磁化”,以进行磁靶向。该颗粒-细胞杂交系统的制备过程简单,因为负载过程仅需要基本的实验室设备,并且负载效率足以使细胞能够进行磁性控制。基于这些原因,SPION 可能是磁性 T 细胞靶向的潜在合适候选物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e3d/6817714/c311072a61ab/IJN-14-8421-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e3d/6817714/d32a03fcb330/IJN-14-8421-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e3d/6817714/34910becee27/IJN-14-8421-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e3d/6817714/38c5fd43e26e/IJN-14-8421-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e3d/6817714/3bda1efbb8da/IJN-14-8421-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e3d/6817714/be63de5e2f01/IJN-14-8421-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e3d/6817714/133bf42c9fd8/IJN-14-8421-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e3d/6817714/c311072a61ab/IJN-14-8421-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e3d/6817714/d32a03fcb330/IJN-14-8421-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e3d/6817714/34910becee27/IJN-14-8421-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e3d/6817714/38c5fd43e26e/IJN-14-8421-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e3d/6817714/3bda1efbb8da/IJN-14-8421-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e3d/6817714/be63de5e2f01/IJN-14-8421-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e3d/6817714/133bf42c9fd8/IJN-14-8421-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e3d/6817714/c311072a61ab/IJN-14-8421-g0007.jpg

相似文献

[1]
Functionalization Of T Lymphocytes With Citrate-Coated Superparamagnetic Iron Oxide Nanoparticles For Magnetically Controlled Immune Therapy.

Int J Nanomedicine. 2019-10-24

[2]
Loading of Primary Human T Lymphocytes with Citrate-Coated Superparamagnetic Iron Oxide Nanoparticles Does Not Impair Their Activation after Polyclonal Stimulation.

Cells. 2020-2-1

[3]
Hypericin-bearing magnetic iron oxide nanoparticles for selective drug delivery in photodynamic therapy.

Int J Nanomedicine. 2015-11-12

[4]
Selection of potential iron oxide nanoparticles for breast cancer treatment based on in vitro cytotoxicity and cellular uptake.

Int J Nanomedicine. 2017-4-19

[5]
Citrate-Coated Superparamagnetic Iron Oxide Nanoparticles Enable a Stable Non-Spilling Loading of T Cells and Their Magnetic Accumulation.

Cancers (Basel). 2021-8-17

[6]
Superparamagnetic iron oxide nanoparticles conjugated with epidermal growth factor (SPION-EGF) for targeting brain tumors.

Int J Nanomedicine. 2014-1-3

[7]
Biological impact of superparamagnetic iron oxide nanoparticles for magnetic particle imaging of head and neck cancer cells.

Int J Nanomedicine. 2014-10-29

[8]
Highly efficient magnetic stem cell labeling with citrate-coated superparamagnetic iron oxide nanoparticles for MRI tracking.

Biomaterials. 2012-3-24

[9]
Synthesis and Characterization of Citrate-Stabilized Gold-Coated Superparamagnetic Iron Oxide Nanoparticles for Biomedical Applications.

Molecules. 2020-9-26

[10]
Hyaluronic acid conjugated superparamagnetic iron oxide nanoparticle for cancer diagnosis and hyperthermia therapy.

Carbohydr Polym. 2015-6-16

引用本文的文献

[1]
Engineered iron oxide nanoplatforms: reprogramming immunosuppressive niches for precision cancer theranostics.

Mol Cancer. 2025-9-1

[2]
Loading monocytes with magnetic nanoparticles enables their magnetic control without toxicity.

Front Bioeng Biotechnol. 2025-1-8

[3]
Loading of CAR-T cells with magnetic nanoparticles for controlled targeting suppresses inflammatory cytokine release and switches tumor cell death mechanism.

MedComm (2020). 2025-1-5

[4]
Application of magnetic nanoparticles in adoptive cell therapy of cancer; training, guiding and imaging cells.

Nanomedicine (Lond). 2024

[5]
Cuboids Prevail When Unraveling the Influence of Microchip Geometry on Macrophage Interactions and Metabolic Responses.

ACS Biomater Sci Eng. 2024-9-9

[6]
Applications and Potentials of a Silk Fibroin Nanoparticle Delivery System in Animal Husbandry.

Animals (Basel). 2024-2-19

[7]
Helios as a Potential Biomarker in Systemic Lupus Erythematosus and New Therapies Based on Immunosuppressive Cells.

Int J Mol Sci. 2023-12-29

[8]
New Types of Magnetic Nanoparticles for Stimuli-Responsive Theranostic Nanoplatforms.

Adv Sci (Weinh). 2024-2

[9]
Nanoparticle-based materials in anticancer drug delivery: Current and future prospects.

Heliyon. 2023-10-20

[10]
Iron Oxide Nanoparticles in Cancer Treatment: Cell Responses and the Potency to Improve Radiosensitivity.

Pharmaceutics. 2023-9-30

本文引用的文献

[1]
Non-magnetic chromatographic separation of colloidally metastable superparamagnetic iron oxide nanoparticles and suspension cells.

J Chromatogr B Analyt Technol Biomed Life Sci. 2019-5-29

[2]
The Risks and Benefits of Immune Checkpoint Blockade in Anti-AChR Antibody-Seropositive Non-Small Cell Lung Cancer Patients.

Cancers (Basel). 2019-1-24

[3]
Cellular effects of paclitaxel-loaded iron oxide nanoparticles on breast cancer using different 2D and 3D cell culture models.

Int J Nanomedicine. 2018-12-21

[4]
CTL019 (tisagenlecleucel): CAR-T therapy for relapsed and refractory B-cell acute lymphoblastic leukemia.

Drug Des Devel Ther. 2018-11-12

[5]
Nivolumab and ipilimumab: immunotherapy for treatment of malignant melanoma.

Future Oncol. 2018-10-18

[6]
Topography of cancer-associated immune cells in human solid tumors.

Elife. 2018-9-4

[7]
Migrating into the Tumor: a Roadmap for T Cells.

Trends Cancer. 2017-11

[8]
Mechanisms regulating T-cell infiltration and activity in solid tumors.

Ann Oncol. 2017-12-1

[9]
Biomimetic Magnetosomes as Versatile Artificial Antigen-Presenting Cells to Potentiate T-Cell-Based Anticancer Therapy.

ACS Nano. 2017-9-20

[10]
Analysis of Hypericin-Mediated Effects and Implications for Targeted Photodynamic Therapy.

Int J Mol Sci. 2017-6-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索