Suppr超能文献

使用多孔多电极阵列评估自发神经元活性:对测定法开发的影响。

Assessment of Spontaneous Neuronal Activity Using Multi-Well Multi-Electrode Arrays: Implications for Assay Development.

机构信息

Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115.

Graduate Program in Biological and Biomedical Sciences, Division of Medical Sciences, Harvard University, Cambridge, MA 02138.

出版信息

eNeuro. 2020 Jan 24;7(1). doi: 10.1523/ENEURO.0080-19.2019. Print 2020 Jan/Feb.

Abstract

Multi-electrode arrays (MEAs) are being more widely used by researchers as an instrument platform for monitoring prolonged, non-destructive recordings of spontaneously firing neurons for applications in modeling Alzheimer's, Parkinson's, schizophrenia, and many other diseases of the human CNS. With the more widespread use of these instruments, there is a need to examine the prior art of studies utilizing MEAs and delineate best practices for data acquisition and analysis to avoid errors in interpretation of the resultant data. Using a dataset of recordings from primary rat () cortical cultures, methods and statistical power for discerning changes in neuronal activity on the array level are examined. Further, a method for unsupervised spike sorting is implemented, allowing for the resolution of action potential incidents down to the single neuron level. Following implementation of spike sorting, the dynamics of firing frequency across populations of individual neurons and networks are examined longitudinally. Finally, the ability to detect a frequency independent phenotype, the change in action potential amplitude, is demonstrated through the use of pore-forming neurotoxin treatments. Taken together, this study provides guidance and tools for users wishing to incorporate multi-well MEA usage into their studies.

摘要

多电极阵列(MEA)作为一种仪器平台,越来越被研究人员广泛用于监测自发放电神经元的长时间、非破坏性记录,适用于模拟阿尔茨海默病、帕金森病、精神分裂症和许多其他 CNS 疾病。随着这些仪器的更广泛使用,需要检查利用 MEA 的先前研究,并为数据采集和分析制定最佳实践,以避免对所得数据的解释出现错误。本研究使用从原代大鼠()皮质培养物中获得的记录数据集,检查了在阵列级别上辨别神经元活动变化的方法和统计能力。此外,还实施了一种用于无监督尖峰分类的方法,允许将动作电位事件解析到单个神经元水平。在实施尖峰分类后,长期检查单个神经元和网络的群体的发射频率的动力学。最后,通过使用形成孔神经毒素处理来证明检测频率独立表型(动作电位幅度变化)的能力。总之,本研究为希望将多孔 MEA 应用于其研究的用户提供了指导和工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验