Division of Microbiology, Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.
Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.
PLoS One. 2020 Feb 6;15(2):e0228459. doi: 10.1371/journal.pone.0228459. eCollection 2020.
Carbapenem-resistant Klebsiella pneumoniae (CRKP) is emerging as a significant pathogen causing healthcare-associated infections. Matrix-assisted laser desorption/ionisation mass spectrometry time-of-flight mass spectrometry (MALDI-TOF MS) is used by clinical microbiology laboratories to address the need for rapid, cost-effective and accurate identification of microorganisms. We evaluated application of machine learning methods for differentiation of drug resistant bacteria from susceptible ones directly using the profile spectra of whole cells MALDI-TOF MS in 46 CRKP and 49 CSKP isolates.
We developed a two-step strategy for data preprocessing consisting of peak matching and a feature selection step before supervised machine learning analysis. Subsequently, five machine learning algorithms were used for classification.
Random forest (RF) outperformed other four algorithms. Using RF algorithm, we correctly identified 93% of the CRKP and 100% of the CSKP isolates with an overall classification accuracy rate of 97% when 80 peaks were selected as input features.
We conclude that CRKPs can be differentiated from CSKPs through RF analysis. We used direct colony method, and only one spectrum for an isolate for analysis, without modification of current protocol. This allows the technique to be easily incorporated into clinical practice in the future.
耐碳青霉烯类肺炎克雷伯菌(CRKP)作为一种重要的病原体,正在引发与医疗保健相关的感染。临床微生物实验室采用基质辅助激光解吸/电离飞行时间质谱(MALDI-TOF MS)来满足对微生物快速、经济有效且准确鉴定的需求。我们评估了机器学习方法在不改变当前方案的情况下,直接使用全细胞 MALDI-TOF MS 图谱谱峰,从药敏表型鉴定区分耐药菌和敏感菌的应用。
我们制定了两步数据预处理策略,包括峰匹配和有监督机器学习分析前的特征选择步骤。随后,使用五种机器学习算法进行分类。
随机森林(RF)算法优于其他四种算法。使用 RF 算法,当选择 80 个峰作为输入特征时,我们正确识别了 93%的 CRKP 和 100%的 CSKP 分离株,总体分类准确率为 97%。
我们得出结论,通过 RF 分析可以区分 CRKP 和 CSKP。我们使用直接的菌落方法,每个分离株只进行一次谱图分析,无需修改当前方案。这使得该技术在未来能够很容易地纳入临床实践。