Suppr超能文献

3D打印神经再生装置。

3D Printed Neural Regeneration Devices.

作者信息

Joung Daeha, Lavoie Nicolas S, Guo Shuang-Zhuang, Park Sung Hyun, Parr Ann M, McAlpine Michael C

机构信息

Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; Department of Physics, Virginia Commonwealth University, Richmond, VA 23284, USA.

Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA.

出版信息

Adv Funct Mater. 2020 Jan 3;30(1). doi: 10.1002/adfm.201906237. Epub 2019 Nov 8.

Abstract

Neural regeneration devices interface with the nervous system and can provide flexibility in material choice, implantation without the need for additional surgeries, and the ability to serve as guides augmented with physical, biological (e.g., cellular), and biochemical functionalities. Given the complexity and challenges associated with neural regeneration, a 3D printing approach to the design and manufacturing of neural devices could provide next-generation opportunities for advanced neural regeneration via the production of anatomically accurate geometries, spatial distributions of cellular components, and incorporation of therapeutic biomolecules. A 3D printing-based approach offers compatibility with 3D scanning, computer modeling, choice of input material, and increasing control over hierarchical integration. Therefore, a 3D printed implantable platform could ultimately be used to prepare novel biomimetic scaffolds and model complex tissue architectures for clinical implants in order to treat neurological diseases and injuries. Further, the flexibility and specificity offered by 3D printed platforms have the potential to be a significant foundational breakthrough with broad research implications in cell signaling and drug screening for personalized healthcare. This progress report examines recent advances in 3D printing strategies for neural regeneration as well as insight into how these approaches can be improved in future studies.

摘要

神经再生装置与神经系统相互作用,在材料选择上具有灵活性,无需额外手术即可植入,并且能够作为具备物理、生物(如细胞)和生化功能的引导物。鉴于神经再生的复杂性和挑战,一种用于神经装置设计和制造的3D打印方法,可通过生成解剖学上精确的几何形状、细胞成分的空间分布以及结合治疗性生物分子,为先进的神经再生提供下一代机遇。基于3D打印的方法与3D扫描、计算机建模、输入材料的选择兼容,并能增强对分层整合的控制。因此,一个3D打印的可植入平台最终可用于制备新型仿生支架,并为临床植入模拟复杂的组织结构,以治疗神经疾病和损伤。此外,3D打印平台所提供的灵活性和特异性,有可能成为一个重大的基础性突破,在细胞信号传导和个性化医疗的药物筛选方面具有广泛的研究意义。本进展报告探讨了神经再生3D打印策略的最新进展,以及对如何在未来研究中改进这些方法的见解。

相似文献

1
3D Printed Neural Regeneration Devices.3D打印神经再生装置。
Adv Funct Mater. 2020 Jan 3;30(1). doi: 10.1002/adfm.201906237. Epub 2019 Nov 8.
4
Addressing Unmet Clinical Needs with 3D Printing Technologies.用 3D 打印技术满足未满足的临床需求。
Adv Healthc Mater. 2018 Sep;7(17):e1800417. doi: 10.1002/adhm.201800417. Epub 2018 Jul 13.
8
3D Printed Anatomical Nerve Regeneration Pathways.3D打印解剖学神经再生通路
Adv Funct Mater. 2015 Oct 21;25(39):6205-6217. doi: 10.1002/adfm.201501760. Epub 2015 Sep 18.
10
3D bioprinted neural tissue constructs for spinal cord injury repair.3D 生物打印的神经组织构建体用于脊髓损伤修复。
Biomaterials. 2021 May;272:120771. doi: 10.1016/j.biomaterials.2021.120771. Epub 2021 Mar 25.

引用本文的文献

3
From mechanism to applications: Advanced microneedles for clinical medicine.从机制到应用:用于临床医学的先进微针
Bioact Mater. 2025 May 5;51:1-45. doi: 10.1016/j.bioactmat.2025.04.025. eCollection 2025 Sep.
6
Imaging-guided deep tissue in vivo sound printing.成像引导的体内深部组织声印技术。
Science. 2025 May 8;388(6747):616-623. doi: 10.1126/science.adt0293.

本文引用的文献

5
Tissue Models for Neurogenesis and Repair in 3D.用于三维神经发生和修复的组织模型
Adv Funct Mater. 2018 Nov 28;28(48). doi: 10.1002/adfm.201803822. Epub 2018 Oct 10.
7
Does CNS Myelin Inhibit Axon Regeneration?中枢神经系统髓磷脂会抑制轴突再生吗?
Neuroscientist. 1999 Jan;5(1):12-18. doi: 10.1177/107385849900500103.
8
Adverse effects of nanosilver on human health and the environment.纳米银对人类健康和环境的有害影响。
Acta Biomater. 2019 Aug;94:145-159. doi: 10.1016/j.actbio.2019.05.042. Epub 2019 May 22.
10
Flexible 3D-Printed EEG Electrodes.柔性 3D 打印 EEG 电极。
Sensors (Basel). 2019 Apr 6;19(7):1650. doi: 10.3390/s19071650.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验