Suppr超能文献

微管末端聚集维持稳定的纺锤体形状。

Microtubule End-Clustering Maintains a Steady-State Spindle Shape.

机构信息

Department of Cell and Tissue Biology, UCSF, San Francisco, CA 94143, USA; Biomedical Sciences Graduate Program, UCSF, San Francisco, CA 94143, USA.

Biochemistry and Molecular Biophysics Option, California Institute of Technology, Pasadena, CA 91106, USA.

出版信息

Curr Biol. 2019 Feb 18;29(4):700-708.e5. doi: 10.1016/j.cub.2019.01.016. Epub 2019 Feb 7.

Abstract

Each time a cell divides, the microtubule cytoskeleton self-organizes into the metaphase spindle: an ellipsoidal steady-state structure that holds its stereotyped geometry despite microtubule turnover and internal stresses [1-6]. Regulation of microtubule dynamics, motor proteins, microtubule crosslinking, and chromatid cohesion can modulate spindle size and shape, and yet modulated spindles reach and hold a new steady state [7-11]. Here, we ask what maintains any spindle steady-state geometry. We report that clustering of microtubule ends by dynein and NuMA is essential for mammalian spindles to hold a steady-state shape. After dynein or NuMA deletion, the mitotic microtubule network is "turbulent"; microtubule bundles extend and bend against the cell cortex, constantly remodeling network shape. We find that spindle turbulence is driven by the homotetrameric kinesin-5 Eg5, and that acute Eg5 inhibition in turbulent spindles recovers spindle geometry and stability. Inspired by in vitro work on active turbulent gels of microtubules and kinesin [12, 13], we explore the kinematics of this in vivo turbulent network. We find that turbulent spindles display decreased nematic order and that motile asters distort the nematic director field. Finally, we see that turbulent spindles can drive both flow of cytoplasmic organelles and whole-cell movement-analogous to the autonomous motility displayed by droplet-encapsulated turbulent gels [12]. Thus, end-clustering by dynein and NuMA is required for mammalian spindles to reach a steady-state geometry, and in their absence Eg5 powers a turbulent microtubule network inside mitotic cells.

摘要

每次细胞分裂时,微管细胞骨架都会自我组织成中期纺锤体:一种椭圆形的稳定状态结构,尽管微管周转率和内部应力不断变化,但它仍保持其定型的几何形状[1-6]。微管动力学、马达蛋白、微管交联和染色质凝聚的调节可以调节纺锤体的大小和形状,但调节后的纺锤体达到并保持新的稳定状态[7-11]。在这里,我们想知道是什么维持了任何纺锤体的稳定状态几何形状。我们报告说,dynein 和 NuMA 对微管末端的聚类对于哺乳动物纺锤体保持稳定的形状是必不可少的。在 dynein 或 NuMA 缺失后,有丝分裂微管网络是“动荡的”;微管束延伸并弯曲抵抗细胞皮层,不断重塑网络形状。我们发现,纺锤体的动荡是由同源四聚体驱动的 kinesin-5 Eg5 驱动的,并且在动荡的纺锤体中急性 Eg5 抑制恢复了纺锤体的几何形状和稳定性。受微管和 kinesin 的体外活性动荡凝胶工作的启发[12,13],我们探索了这种体内动荡网络的运动学。我们发现,动荡的纺锤体显示出降低的向列有序性,并且运动性星体扭曲了向列导向场。最后,我们看到动荡的纺锤体可以驱动细胞质细胞器的流动和整个细胞的运动——类似于被包裹的液滴的自主运动[12]。因此,dynein 和 NuMA 的末端聚类对于哺乳动物纺锤体达到稳定的几何形状是必需的,并且在它们缺失的情况下,Eg5 为有丝分裂细胞内的动荡微管网络提供动力。

相似文献

1
Microtubule End-Clustering Maintains a Steady-State Spindle Shape.
Curr Biol. 2019 Feb 18;29(4):700-708.e5. doi: 10.1016/j.cub.2019.01.016. Epub 2019 Feb 7.
2
Opposing motors provide mechanical and functional robustness in the human spindle.
Dev Cell. 2021 Nov 8;56(21):3006-3018.e5. doi: 10.1016/j.devcel.2021.09.011. Epub 2021 Oct 5.
3
NuMA recruits dynein activity to microtubule minus-ends at mitosis.
Elife. 2017 Nov 29;6:e29328. doi: 10.7554/eLife.29328.
4
5
Dynamic reorganization of Eg5 in the mammalian spindle throughout mitosis requires dynein and TPX2.
Mol Biol Cell. 2012 Apr;23(7):1254-66. doi: 10.1091/mbc.E11-09-0820. Epub 2012 Feb 15.
7
Poleward transport of Eg5 by dynein-dynactin in Xenopus laevis egg extract spindles.
J Cell Biol. 2008 Aug 25;182(4):715-26. doi: 10.1083/jcb.200801125. Epub 2008 Aug 18.
8
Poleward transport of TPX2 in the mammalian mitotic spindle requires dynein, Eg5, and microtubule flux.
Mol Biol Cell. 2010 Mar 15;21(6):979-88. doi: 10.1091/mbc.e09-07-0601. Epub 2010 Jan 28.
9
Spindle fusion requires dynein-mediated sliding of oppositely oriented microtubules.
Curr Biol. 2009 Feb 24;19(4):287-96. doi: 10.1016/j.cub.2009.01.055.
10
Increased lateral microtubule contact at the cell cortex is sufficient to drive mammalian spindle elongation.
Mol Biol Cell. 2017 Jul 7;28(14):1975-1983. doi: 10.1091/mbc.E17-03-0171. Epub 2017 May 3.

引用本文的文献

2
NuMA mechanically reinforces the spindle independently of its partner dynein.
Curr Biol. 2025 Jul 30. doi: 10.1016/j.cub.2025.07.028.
3
NuMA mechanically reinforces the spindle independently of its partner dynein.
bioRxiv. 2024 Dec 1:2024.11.29.622360. doi: 10.1101/2024.11.29.622360.
4
Motor-driven microtubule diffusion in a photobleached dynamical coordinate system.
Proc Natl Acad Sci U S A. 2025 Jun 17;122(24):e2417020122. doi: 10.1073/pnas.2417020122. Epub 2025 Jun 9.
5
Molecular design principles for bipolar spindle organization by two opposing motors.
Proc Natl Acad Sci U S A. 2025 Mar 25;122(12):e2422190122. doi: 10.1073/pnas.2422190122. Epub 2025 Mar 21.
6
NuMA is a mitotic adaptor protein that activates dynein and connects it to microtubule minus ends.
J Cell Biol. 2025 Apr 7;224(4). doi: 10.1083/jcb.202408118. Epub 2025 Feb 11.
7
Structural and functional insights into activation and regulation of the dynein-dynactin-NuMA complex.
bioRxiv. 2024 Dec 3:2024.11.26.625568. doi: 10.1101/2024.11.26.625568.
10
Mechanisms underlying spindle assembly and robustness.
Nat Rev Mol Cell Biol. 2023 Aug;24(8):523-542. doi: 10.1038/s41580-023-00584-0. Epub 2023 Mar 28.

本文引用的文献

1
Determinants of Polar versus Nematic Organization in Networks of Dynamic Microtubules and Mitotic Motors.
Cell. 2018 Oct 18;175(3):796-808.e14. doi: 10.1016/j.cell.2018.09.029.
2
Active nematics.
Nat Commun. 2018 Aug 21;9(1):3246. doi: 10.1038/s41467-018-05666-8.
3
The Physics of the Metaphase Spindle.
Annu Rev Biophys. 2018 May 20;47:655-673. doi: 10.1146/annurev-biophys-060414-034107.
4
Morphometrics of complex cell shapes: lobe contribution elliptic Fourier analysis (LOCO-EFA).
Development. 2018 Mar 20;145(6):dev156778. doi: 10.1242/dev.156778.
5
6
NuMA recruits dynein activity to microtubule minus-ends at mitosis.
Elife. 2017 Nov 29;6:e29328. doi: 10.7554/eLife.29328.
7
A theory that predicts behaviors of disordered cytoskeletal networks.
Mol Syst Biol. 2017 Sep 27;13(9):941. doi: 10.15252/msb.20177796.
8
Increased lateral microtubule contact at the cell cortex is sufficient to drive mammalian spindle elongation.
Mol Biol Cell. 2017 Jul 7;28(14):1975-1983. doi: 10.1091/mbc.E17-03-0171. Epub 2017 May 3.
9
Transition from turbulent to coherent flows in confined three-dimensional active fluids.
Science. 2017 Mar 24;355(6331). doi: 10.1126/science.aal1979.
10
Spatial confinement of active microtubule networks induces large-scale rotational cytoplasmic flow.
Proc Natl Acad Sci U S A. 2017 Mar 14;114(11):2922-2927. doi: 10.1073/pnas.1616001114. Epub 2017 Mar 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验