Department of Cell and Tissue Biology, UCSF, San Francisco, CA 94143, USA; Biomedical Sciences Graduate Program, UCSF, San Francisco, CA 94143, USA.
Biochemistry and Molecular Biophysics Option, California Institute of Technology, Pasadena, CA 91106, USA.
Curr Biol. 2019 Feb 18;29(4):700-708.e5. doi: 10.1016/j.cub.2019.01.016. Epub 2019 Feb 7.
Each time a cell divides, the microtubule cytoskeleton self-organizes into the metaphase spindle: an ellipsoidal steady-state structure that holds its stereotyped geometry despite microtubule turnover and internal stresses [1-6]. Regulation of microtubule dynamics, motor proteins, microtubule crosslinking, and chromatid cohesion can modulate spindle size and shape, and yet modulated spindles reach and hold a new steady state [7-11]. Here, we ask what maintains any spindle steady-state geometry. We report that clustering of microtubule ends by dynein and NuMA is essential for mammalian spindles to hold a steady-state shape. After dynein or NuMA deletion, the mitotic microtubule network is "turbulent"; microtubule bundles extend and bend against the cell cortex, constantly remodeling network shape. We find that spindle turbulence is driven by the homotetrameric kinesin-5 Eg5, and that acute Eg5 inhibition in turbulent spindles recovers spindle geometry and stability. Inspired by in vitro work on active turbulent gels of microtubules and kinesin [12, 13], we explore the kinematics of this in vivo turbulent network. We find that turbulent spindles display decreased nematic order and that motile asters distort the nematic director field. Finally, we see that turbulent spindles can drive both flow of cytoplasmic organelles and whole-cell movement-analogous to the autonomous motility displayed by droplet-encapsulated turbulent gels [12]. Thus, end-clustering by dynein and NuMA is required for mammalian spindles to reach a steady-state geometry, and in their absence Eg5 powers a turbulent microtubule network inside mitotic cells.
每次细胞分裂时,微管细胞骨架都会自我组织成中期纺锤体:一种椭圆形的稳定状态结构,尽管微管周转率和内部应力不断变化,但它仍保持其定型的几何形状[1-6]。微管动力学、马达蛋白、微管交联和染色质凝聚的调节可以调节纺锤体的大小和形状,但调节后的纺锤体达到并保持新的稳定状态[7-11]。在这里,我们想知道是什么维持了任何纺锤体的稳定状态几何形状。我们报告说,dynein 和 NuMA 对微管末端的聚类对于哺乳动物纺锤体保持稳定的形状是必不可少的。在 dynein 或 NuMA 缺失后,有丝分裂微管网络是“动荡的”;微管束延伸并弯曲抵抗细胞皮层,不断重塑网络形状。我们发现,纺锤体的动荡是由同源四聚体驱动的 kinesin-5 Eg5 驱动的,并且在动荡的纺锤体中急性 Eg5 抑制恢复了纺锤体的几何形状和稳定性。受微管和 kinesin 的体外活性动荡凝胶工作的启发[12,13],我们探索了这种体内动荡网络的运动学。我们发现,动荡的纺锤体显示出降低的向列有序性,并且运动性星体扭曲了向列导向场。最后,我们看到动荡的纺锤体可以驱动细胞质细胞器的流动和整个细胞的运动——类似于被包裹的液滴的自主运动[12]。因此,dynein 和 NuMA 的末端聚类对于哺乳动物纺锤体达到稳定的几何形状是必需的,并且在它们缺失的情况下,Eg5 为有丝分裂细胞内的动荡微管网络提供动力。