Suppr超能文献

比较网络模型和潜在变量模型时使用部分或未校正相关矩阵的影响。

The Effects of Using Partial or Uncorrected Correlation Matrices When Comparing Network and Latent Variable Models.

作者信息

McFarland Dennis

机构信息

National Center for Adaptive Neurotechnologies, Albany, NY 12208, USA.

出版信息

J Intell. 2020 Feb 15;8(1):7. doi: 10.3390/jintelligence8010007.

Abstract

Network models of the WAIS-IV based on regularized partial correlation matrices have been reported to outperform latent variable models based on uncorrected correlation matrices. The present study sought to compare network and latent variable models using both partial and uncorrected correlation matrices with both types of models. The results show that a network model provided better fit to matrices of partial correlations but latent variable models provided better fit to matrices of full correlations. This result is due to the fact that the use of partial correlations removes most of the covariance common to WAIS-IV tests. Modeling should be based on uncorrected correlations since these represent the majority of shared variance between WAIS-IV test scores.

摘要

据报道,基于正则化偏相关矩阵的韦氏成人智力量表第四版(WAIS-IV)网络模型优于基于未校正相关矩阵的潜在变量模型。本研究旨在使用偏相关矩阵和未校正相关矩阵,对网络模型和潜在变量模型这两种类型的模型进行比较。结果表明,网络模型对偏相关矩阵的拟合效果更好,而潜在变量模型对完全相关矩阵的拟合效果更好。这一结果是由于使用偏相关消除了WAIS-IV测试中大部分共同的协方差。建模应基于未校正的相关性,因为这些相关性代表了WAIS-IV测试分数之间大部分的共享方差。

相似文献

4
[The estimation of premorbid intelligence levels in French speakers].[法语使用者病前智力水平的评估]
Encephale. 2005 Jan-Feb;31(1 Pt 1):31-43. doi: 10.1016/s0013-7006(05)82370-x.

本文引用的文献

2
A tutorial on regularized partial correlation networks.正则化偏相关网络教程。
Psychol Methods. 2018 Dec;23(4):617-634. doi: 10.1037/met0000167. Epub 2018 Mar 29.
3
Evaluation of multidimensional models of WAIS-IV subtest performance.韦氏成人智力量表第四版分测验成绩的多维模型评估。
Clin Neuropsychol. 2017 Aug-Oct;31(6-7):1127-1140. doi: 10.1080/13854046.2017.1320426. Epub 2017 Apr 21.
6
Symptoms as latent variables.症状作为潜在变量。
Behav Brain Sci. 2010 Jun;33(2-3):165-6. doi: 10.1017/S0140525X1000066X.
7
Comorbidity: a network perspective.共病:网络视角。
Behav Brain Sci. 2010 Jun;33(2-3):137-50; discussion 150-93. doi: 10.1017/S0140525X09991567.
9
Sparse inverse covariance estimation with the graphical lasso.使用图模型选择法进行稀疏逆协方差估计。
Biostatistics. 2008 Jul;9(3):432-41. doi: 10.1093/biostatistics/kxm045. Epub 2007 Dec 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验