Suppr超能文献

基于机器学习算法对 I 型糖尿病患者血糖预测与经典时间序列模型的对比基准研究。

Benchmarking Machine Learning Algorithms on Blood Glucose Prediction for Type I Diabetes in Comparison With Classical Time-Series Models.

出版信息

IEEE Trans Biomed Eng. 2020 Nov;67(11):3101-3124. doi: 10.1109/TBME.2020.2975959. Epub 2020 Feb 24.

Abstract

OBJECTIVE

This paper aims to compare the performance of several commonly known machine-learning (ML) models versus a classic Autoregression with Exogenous inputs (ARX) model in the prediction of blood glucose (BG) levels using time-series data of patients with Type 1 diabetes (T1D).

METHODS

The ML algorithms include ML-based regression models and deep learning models such as a vanilla Long-Short-Term-Memory (LSTM) Network and a Temporal Convolution Network (TCN). Evaluations have been conducted with respect to different input features, regression model orders, as well as using the recursive method or direct method for multi-step prediction of BG levels. Prediction performance metrics include the average Root Mean Square Error (RMSE), temporal gain (TG) for early prediction, and the normalized energy of the second-order differences (ESOD) of the predicted time series to reflect risk of false alerts on hypo/hyper glycemia events.

RESULTS

The ARX model achieved the lowest average RMSE for both recursive and direct methods, the second highest average TG under the direct method, but with a higher average normalized ESOD than some other models.

CONCLUSION

There was no significant advantage observed from the ML models compared to the classic ARX model in predicting BG levels for T1D, except that TCN's performance was more robust with respect to BG trajectories with spurious oscillations, for which ARX tended to over-predict peak BG values and under-predict valley BG values.

SIGNIFICANCE

Insight learned from this study could help researchers and clinical practitioners to select appropriate models for BG prediction.

摘要

目的

本研究旨在比较几种常见机器学习(ML)模型与经典自回归外生输入(ARX)模型在预测 1 型糖尿病(T1D)患者时间序列血糖(BG)水平方面的性能。

方法

ML 算法包括基于 ML 的回归模型和深度学习模型,如普通长短期记忆(LSTM)网络和时频卷积网络(TCN)。评估考虑了不同的输入特征、回归模型阶数,以及使用递归方法或直接方法进行多步 BG 水平预测。预测性能指标包括平均均方根误差(RMSE)、早期预测的时间增益(TG)以及预测时间序列的二阶差分的归一化能量(ESOD),以反映低血糖/高血糖事件误报的风险。

结果

ARX 模型在递归和直接方法下的平均 RMSE 最低,直接方法下的平均 TG 第二高,但平均 ESOD 高于其他一些模型。

结论

与经典 ARX 模型相比,ML 模型在预测 T1D 的 BG 水平方面没有明显优势,除了 TCN 对具有虚假波动的 BG 轨迹的性能更稳健,ARX 倾向于高估峰值 BG 值和低估谷值 BG 值。

意义

本研究获得的见解有助于研究人员和临床医生选择合适的 BG 预测模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验