Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America.
Department of Physics, University of Florida, Gainesville, Florida, United States of America.
PLoS Pathog. 2020 Mar 9;16(3):e1008344. doi: 10.1371/journal.ppat.1008344. eCollection 2020 Mar.
A recent genome-wide screen identified ~300 essential or growth-supporting genes in the dental caries pathogen Streptococcus mutans. To be able to study these genes, we built a CRISPR interference tool around the Cas9 nuclease (Cas9Smu) encoded in the S. mutans UA159 genome. Using a xylose-inducible dead Cas9Smu with a constitutively active single-guide RNA (sgRNA), we observed titratable repression of GFP fluorescence that compared favorably to that of Streptococcus pyogenes dCas9 (Cas9Spy). We then investigated sgRNA specificity and proto-spacer adjacent motif (PAM) requirements. Interference by sgRNAs did not occur with double or triple base-pair mutations, or if single base-pair mutations were in the 3' end of the sgRNA. Bioinformatic analysis of >450 S. mutans genomes allied with in vivo assays revealed a similar PAM recognition sequence as Cas9Spy. Next, we created a comprehensive library of sgRNA plasmids that were directed at essential and growth-supporting genes. We discovered growth defects for 77% of the CRISPRi strains expressing sgRNAs. Phenotypes of CRISPRi strains, across several biological pathways, were assessed using fluorescence microscopy. A variety of cell structure anomalies were observed, including segregational instability of the chromosome, enlarged cells, and ovococci-to-rod shape transitions. CRISPRi was also employed to observe how silencing of cell wall glycopolysaccharide biosynthesis (rhamnose-glucose polysaccharide, RGP) affected both cell division and pathogenesis in a wax worm model. The CRISPRi tool and sgRNA library are valuable resources for characterizing essential genes in S. mutans, some of which could prove to be promising therapeutic targets.
最近的全基因组筛选鉴定出龋齿病原体变形链球菌中约 300 个必需或支持生长的基因。为了能够研究这些基因,我们围绕变形链球菌 UA159 基因组中编码的 Cas9 核酸酶 (Cas9Smu) 构建了一个 CRISPR 干扰工具。使用带有组成型活性单指导 RNA(sgRNA)的木糖诱导性失活 Cas9Smu,我们观察到 GFP 荧光的可滴定抑制作用,与酿脓链球菌 dCas9(Cas9Spy)相比表现出色。然后,我们研究了 sgRNA 的特异性和原间隔基序(PAM)要求。如果 sgRNA 中的双碱基或三碱基突变,或者单碱基突变位于 sgRNA 的 3'端,则不会发生干扰。与体内测定法相结合的对>450 个变形链球菌基因组的生物信息学分析揭示了与 Cas9Spy 相似的 PAM 识别序列。接下来,我们创建了一个针对必需和支持生长的基因的 sgRNA 质粒综合文库。我们发现表达 sgRNA 的 77%的 CRISPRi 菌株出现生长缺陷。通过荧光显微镜评估了 CRISPRi 菌株在几个生物途径中的表型。观察到各种细胞结构异常,包括染色体的分离不稳定、细胞增大和卵球菌到棒状形状的转变。还使用 CRISPRi 观察沉默细胞壁糖蛋白多糖生物合成(鼠李糖-葡萄糖多糖,RGP)如何影响蜡虫模型中的细胞分裂和发病机制。CRISPRi 工具和 sgRNA 文库是鉴定变形链球菌中必需基因的有价值的资源,其中一些可能被证明是有前途的治疗靶标。