Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, Neuherberg, Germany.
Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-Universität (LMU), Munich, Germany.
Nat Methods. 2020 Apr;17(4):442-449. doi: 10.1038/s41592-020-0792-1. Epub 2020 Mar 11.
Tissue clearing methods enable the imaging of biological specimens without sectioning. However, reliable and scalable analysis of large imaging datasets in three dimensions remains a challenge. Here we developed a deep learning-based framework to quantify and analyze brain vasculature, named Vessel Segmentation & Analysis Pipeline (VesSAP). Our pipeline uses a convolutional neural network (CNN) with a transfer learning approach for segmentation and achieves human-level accuracy. By using VesSAP, we analyzed the vascular features of whole C57BL/6J, CD1 and BALB/c mouse brains at the micrometer scale after registering them to the Allen mouse brain atlas. We report evidence of secondary intracranial collateral vascularization in CD1 mice and find reduced vascularization of the brainstem in comparison to the cerebrum. Thus, VesSAP enables unbiased and scalable quantifications of the angioarchitecture of cleared mouse brains and yields biological insights into the vascular function of the brain.
组织透明化方法使人们无需进行切片即可对生物样本进行成像。然而,对三维大成像数据集进行可靠且可扩展的分析仍然是一个挑战。在这里,我们开发了一个基于深度学习的框架来量化和分析大脑血管结构,命名为血管分割与分析管道(Vessel Segmentation & Analysis Pipeline,VesSAP)。我们的管道使用具有迁移学习方法的卷积神经网络(CNN)进行分割,达到了人类水平的准确性。通过使用 VesSAP,我们在将其注册到 Allen 小鼠脑图谱后,以微米级的分辨率分析了 C57BL/6J、CD1 和 BALB/c 三种小鼠全脑的血管特征。我们在 CD1 小鼠中发现了次级颅内侧支血管化的证据,并发现与大脑相比,脑干的血管生成减少。因此,VesSAP 可以对透明化的小鼠大脑的血管结构进行无偏且可扩展的量化,并深入了解大脑的血管功能。