Suppr超能文献

关于KR780676产生的半乳聚糖胞外多糖的黄曲霉毒素结合活性的报告。

Report on aflatoxin-binding activity of galactan exopolysaccharide produced by KR780676.

作者信息

Kavitake Digambar, Singh Sanjay Pratap, Kandasamy Sujatha, Devi Palanisamy Bruntha, Shetty Prathapkumar Halady

机构信息

Department of Food Science and Technology, Pondicherry University, Pondicherry, 605014 India.

出版信息

3 Biotech. 2020 Apr;10(4):181. doi: 10.1007/s13205-020-02173-w. Epub 2020 Mar 28.

Abstract

Galactan exopolysaccharide (EPS) produced by KR780676 isolated from an Indian traditional fermented food has been reported earlier. In this manuscript, we have studied aflatoxin-binding ability of this galactan EPS. Aflatoxin B (AFB) binding ability of galactan EPS was observed in an increasing trend with increasing EPS concentration (20-100 mg/mL). At lower concentrations (< 20 mg/mL) of EPS, the binding activity was undetectable, while notable binding was seen from 30 mg/mL. Enhanced AFB binding (32.40%) was recorded at 50 mg/mL of EPS and it increased gradually up to 34.79% at 100 mg/mL concentrations of EPS. The intensity of bands in high-performance thin-layer chromatography (HPTLC) analysis confirms the AFB binding efficiency of galactan EPS, which shows its potential application for removal of toxins in food and feed industry. Galactan EPS binding activity to AFB is further studied with particle size analysis (PSA). This is the first study reporting the aflatoxin-binding activity of any kind of EPS from lactic acid bacteria.

摘要

先前已有报道称,从一种印度传统发酵食品中分离出的KR780676能产生半乳聚糖胞外多糖(EPS)。在本论文中,我们研究了这种半乳聚糖EPS结合黄曲霉毒素的能力。随着EPS浓度(20 - 100毫克/毫升)的增加,半乳聚糖EPS对黄曲霉毒素B(AFB)的结合能力呈上升趋势。在较低浓度(<20毫克/毫升)的EPS下,未检测到结合活性,而从30毫克/毫升开始可观察到显著的结合。在50毫克/毫升的EPS浓度下,AFB结合增强(32.40%),在100毫克/毫升的EPS浓度下逐渐增加至34.79%。高效薄层色谱(HPTLC)分析中的条带强度证实了半乳聚糖EPS对AFB的结合效率,这表明其在食品和饲料工业中去除毒素方面具有潜在应用。通过粒度分析(PSA)进一步研究了半乳聚糖EPS与AFB的结合活性。这是首次报道乳酸菌来源的任何一种EPS的黄曲霉毒素结合活性的研究。

相似文献

1
Report on aflatoxin-binding activity of galactan exopolysaccharide produced by KR780676.
3 Biotech. 2020 Apr;10(4):181. doi: 10.1007/s13205-020-02173-w. Epub 2020 Mar 28.
2
Effect of γ-irradiation on physico-chemical and antioxidant properties of galactan exopolysaccharide from KR780676.
J Food Sci Technol. 2019 Apr;56(4):1766-1774. doi: 10.1007/s13197-019-03608-w. Epub 2019 Mar 5.
3
Characterization of a novel galactan produced by Weissella confusa KR780676 from an acidic fermented food.
Int J Biol Macromol. 2016 May;86:681-9. doi: 10.1016/j.ijbiomac.2016.01.099. Epub 2016 Feb 1.
4
Physico-chemical characterization of galactan exopolysaccharide produced by Weissella confusa KR780676.
Int J Biol Macromol. 2016 Dec;93(Pt A):822-828. doi: 10.1016/j.ijbiomac.2016.09.054. Epub 2016 Sep 17.
5
Preferential growth stimulation of probiotic bacteria by galactan exopolysaccharide from Weissella confusa KR780676.
Food Res Int. 2021 May;143:110333. doi: 10.1016/j.foodres.2021.110333. Epub 2021 Mar 23.
6
Evaluation of oil-in-water (O/W) emulsifying properties of galactan exopolysaccharide from KR780676.
J Food Sci Technol. 2020 Apr;57(4):1579-1585. doi: 10.1007/s13197-020-04262-3. Epub 2020 Jan 24.
9
Physicochemical and functional characterization of mannan exopolysaccharide from Weissella confusa MD1 with bioactivities.
Int J Biol Macromol. 2020 Jan 15;143:797-805. doi: 10.1016/j.ijbiomac.2019.09.139. Epub 2019 Nov 9.
10
Characterization, antioxidant and immunomodulatory potential on exopolysaccharide produced by wild type and mutant strains.
Biotechnol Rep (Amst). 2018 Jul 3;19:e00271. doi: 10.1016/j.btre.2018.e00271. eCollection 2018 Sep.

引用本文的文献

1
Unveiling the Perspective on as a Promising Biocontrol Agent Against Fusaria.
Microorganisms. 2025 Mar 15;13(3):666. doi: 10.3390/microorganisms13030666.
2
The and genera: up-to-date taxonomy, ecology, safety, biotechnological, and probiotic potential.
Front Microbiol. 2023 Dec 11;14:1289937. doi: 10.3389/fmicb.2023.1289937. eCollection 2023.
3
Complete Genome Sequence of LM1 and Comparative Genomic Analysis.
Front Microbiol. 2021 Sep 28;12:749218. doi: 10.3389/fmicb.2021.749218. eCollection 2021.
4
Aflatoxin B1 and Sterigmatocystin Binding Potential of Non- LAB Strains.
Toxins (Basel). 2020 Dec 14;12(12):799. doi: 10.3390/toxins12120799.

本文引用的文献

1
Evaluation of oil-in-water (O/W) emulsifying properties of galactan exopolysaccharide from KR780676.
J Food Sci Technol. 2020 Apr;57(4):1579-1585. doi: 10.1007/s13197-020-04262-3. Epub 2020 Jan 24.
2
Interface between food grade flavour and water soluble galactan biopolymer to form a stable water-in-oil-in-water emulsion.
Int J Biol Macromol. 2019 Aug 15;135:445-452. doi: 10.1016/j.ijbiomac.2019.05.199. Epub 2019 May 28.
3
Physico-chemical characterization of galactan exopolysaccharide produced by Weissella confusa KR780676.
Int J Biol Macromol. 2016 Dec;93(Pt A):822-828. doi: 10.1016/j.ijbiomac.2016.09.054. Epub 2016 Sep 17.
4
Characterization of a novel galactan produced by Weissella confusa KR780676 from an acidic fermented food.
Int J Biol Macromol. 2016 May;86:681-9. doi: 10.1016/j.ijbiomac.2016.01.099. Epub 2016 Feb 1.
5
In vitro aflatoxin B1 binding capacity by two Enterococcus faecium strains isolated from healthy dog faeces.
J Appl Microbiol. 2015 Mar;118(3):574-82. doi: 10.1111/jam.12726. Epub 2015 Jan 13.
6
In vitro and in vivo characterization of mycotoxin-binding additives used for animal feeds in Mexico.
Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2009 May;26(5):733-43. doi: 10.1080/02652030802641872.
7
Surface binding of aflatoxin B1 by Saccharomyces cerevisiae strains with potential decontaminating abilities in indigenous fermented foods.
Int J Food Microbiol. 2007 Jan 1;113(1):41-6. doi: 10.1016/j.ijfoodmicro.2006.07.013. Epub 2006 Sep 22.
10
Degradation of aflatoxin B(1) by cell-free extracts of Rhodococcus erythropolis and Mycobacterium fluoranthenivorans sp. nov. DSM44556(T).
Int J Food Microbiol. 2005 Nov 25;105(2):111-7. doi: 10.1016/j.ijfoodmicro.2005.05.004. Epub 2005 Aug 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验