Suppr超能文献

通过解析酶的金属结合位点来理解生物无机纳米花作为生物催化剂的功能特性。

Understanding the functional properties of bio-inorganic nanoflowers as biocatalysts by deciphering the metal-binding sites of enzymes.

作者信息

Escobar Sindy, Velasco-Lozano Susana, Lu Chih-Hao, Lin Yu-Feng, Mesa Monica, Bernal Claudia, López-Gallego Fernando

机构信息

Grupo Ciencia de los Materiales, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia - UdeA, Calle 70 No. 52-21, Medellín, Colombia.

出版信息

J Mater Chem B. 2017 Jun 21;5(23):4478-4486. doi: 10.1039/c6tb03295h. Epub 2017 Mar 17.

Abstract

The biomineralisation of metal phosphates is a promising approach to develop more efficient nanobiocatalysts; however, the interactions between the protein and the inorganic mineral are poorly understood. Elucidating which protein regions most likely participate in the mineral formation will guide the fabrication of more efficient biocatalysts based on metal-phosphate nanoflowers. We have biomineralised the lipase from Thermomyces lanuginosus using three calcium, zinc and copper phosphates to fabricate different types of bio-inorganic nanoflowers. To better understand how the biomineralisation process affects the enzyme properties, we have computationally predicted the protein regions with a higher propensity for binding Ca, Cu and Zn. These binding sites can be considered as presumable nucleation points where the biomineralisation process starts and explain why different metals can form bio-inorganic nanoflowers of the same enzyme with different functional properties. The formation of calcium, copper and zinc phosphates in the presence of this lipase gives rise to nanoflowers with different morphologies and different enzymatic properties such as activity, stability, hyperactivation and activity-pH profile; these functional differences are supported by structural studies based on fluorescence spectroscopy and can be explained by the different locations of the predicted nucleation sites for the different metals. Among the three metals used herein, the mineralisation of this lipase with zinc-phosphate enables the fabrication of bio-inorganic nanoflowers 34 times more stable than the soluble enzyme. These bio-inorganic nanoflowers were reused for 8 reaction cycles achieving 100% yield in the hydrolysis of p-nitrophenol butyrate but losing more than 50% of their initial activity after 6 operational cycles. Finally, this heterogeneous biocatalyst was more active and enantioselective than the soluble enzyme (ee = 79%(R)) towards the kinetic resolution of rac-1-phenylethyl acetate yielding the R enantiomer with ee = 84%.

摘要

金属磷酸盐的生物矿化是开发更高效纳米生物催化剂的一种很有前景的方法;然而,蛋白质与无机矿物质之间的相互作用却知之甚少。阐明哪些蛋白质区域最有可能参与矿物质形成,将指导基于金属磷酸盐纳米花的更高效生物催化剂的制备。我们使用三种钙、锌和铜的磷酸盐对嗜热栖热菌脂肪酶进行了生物矿化,以制备不同类型的生物无机纳米花。为了更好地理解生物矿化过程如何影响酶的性质,我们通过计算预测了与钙、铜和锌结合倾向较高的蛋白质区域。这些结合位点可被视为生物矿化过程开始的假定成核点,并解释了为什么不同的金属能与同一酶形成具有不同功能特性的生物无机纳米花。在这种脂肪酶存在的情况下,钙、铜和锌磷酸盐的形成产生了具有不同形态和不同酶学性质(如活性、稳定性、超活化和活性 -pH 曲线)的纳米花;这些功能差异得到了基于荧光光谱的结构研究的支持,并且可以通过不同金属预测成核位点的不同位置来解释。在本文使用的三种金属中,这种脂肪酶与磷酸锌的矿化能够制备出比可溶性酶稳定 34 倍的生物无机纳米花。这些生物无机纳米花在对硝基苯酚丁酸酯水解反应中重复使用了 8 个反应循环,产率达到 100%,但在 6 个操作循环后失去了超过 50%的初始活性。最后,这种非均相生物催化剂在对rac -1-苯乙酸乙酯的动力学拆分中比可溶性酶更具活性和对映选择性(ee = 79%(R)),生成的 R 对映体的 ee 值为 84%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验