Blaicher Matthias, Billah Muhammad Rodlin, Kemal Juned, Hoose Tobias, Marin-Palomo Pablo, Hofmann Andreas, Kutuvantavida Yasar, Kieninger Clemens, Dietrich Philipp-Immanuel, Lauermann Matthias, Wolf Stefan, Troppenz Ute, Moehrle Martin, Merget Florian, Skacel Sebastian, Witzens Jeremy, Randel Sebastian, Freude Wolfgang, Koos Christian
1Institute of Photonics and Quantum Electronics (IPQ), Karlsruhe Institute of Technology (KIT), Engesserstraße 5, 76131 Karlsruhe, Germany.
2Institute for Microstructure Technology (IMT), KIT, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
Light Sci Appl. 2020 Apr 27;9:71. doi: 10.1038/s41377-020-0272-5. eCollection 2020.
Three-dimensional (3D) nano-printing of freeform optical waveguides, also referred to as photonic wire bonding, allows for efficient coupling between photonic chips and can greatly simplify optical system assembly. As a key advantage, the shape and the trajectory of photonic wire bonds can be adapted to the mode-field profiles and the positions of the chips, thereby offering an attractive alternative to conventional optical assembly techniques that rely on technically complex and costly high-precision alignment. However, while the fundamental advantages of the photonic wire bonding concept have been shown in proof-of-concept experiments, it has so far been unclear whether the technique can also be leveraged for practically relevant use cases with stringent reproducibility and reliability requirements. In this paper, we demonstrate optical communication engines that rely on photonic wire bonding for connecting arrays of silicon photonic modulators to InP lasers and single-mode fibres. In a first experiment, we show an eight-channel transmitter offering an aggregate line rate of 448 Gbit/s by low-complexity intensity modulation. A second experiment is dedicated to a four-channel coherent transmitter, operating at a net data rate of 732.7 Gbit/s - a record for coherent silicon photonic transmitters with co-packaged lasers. Using dedicated test chips, we further demonstrate automated mass production of photonic wire bonds with insertion losses of (0.7 ± 0.15) dB, and we show their resilience in environmental-stability tests and at high optical power. These results might form the basis for simplified assembly of advanced photonic multi-chip systems that combine the distinct advantages of different integration platforms.
自由形式光波导的三维(3D)纳米打印,也称为光子引线键合,能够实现光子芯片之间的高效耦合,并能极大地简化光学系统组装。一个关键优势在于,光子引线键合的形状和轨迹可以与模式场分布及芯片位置相适配,从而为依赖技术复杂且成本高昂的高精度对准的传统光学组装技术提供了一个有吸引力的替代方案。然而,尽管光子引线键合概念的基本优势已在概念验证实验中得到展示,但迄今为止尚不清楚该技术是否也能用于具有严格再现性和可靠性要求的实际相关用例。在本文中,我们展示了依赖光子引线键合将硅光子调制器阵列与磷化铟激光器及单模光纤相连的光通信引擎。在第一个实验中,我们展示了一个八通道发射器,通过低复杂度强度调制实现了448 Gbit/s的总线路速率。第二个实验致力于一个四通道相干发射器,其净数据速率为732.7 Gbit/s,这是具有共封装激光器的相干硅光子发射器的记录。使用专用测试芯片,我们进一步展示了插入损耗为(0.7±0.15)dB的光子引线键合的自动化批量生产,并展示了它们在环境稳定性测试和高光功率下的弹性。这些结果可能为结合不同集成平台独特优势的先进光子多芯片系统的简化组装奠定基础。